Skip to main content

Advertisement

Log in

The role of miRNAs in the development of prostate cancer

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) act as key post-transcriptional regulators of gene expression. This review examines current advances in the study of the role of miRNAs in cancer, including prostate cancer. Issues devoted to the nomenclature, biogenesis, the role of miRNAs as oncogenes and tumor suppressors, and their role in the diagnosis, treatment, and prognosis of prostate cancer are discussed. Assessment of the role of miRNAs in the development of prostate cancer will promote early diagnosis and will be important for the development of new approaches to the disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GLOBOCAN 2012. http://globocan.iarc.fr

  2. Apolikhin, O.I., Sivkov, A.V., Moskaleva, N.G., et al., Analysis of uronefrological morbidity and mortality in the Russian Federation for the period of ten years (2002–2012) according to official statistics, Eksp. Klin. Urol., 2014, vol. 2, pp. 4–12.

    Google Scholar 

  3. Chigireva, I.B., Khasanov, R.Sh., Gilyazutdinov, I.A., et al., Rannyaya diagnostika raka predstatel’noi zhelezy: lektsii dlya vrachei obshchei praktiki (Early Diagnosis of Prostate Cancer: Lectures for General Practitioners), Prakticheskaya Meditsina, 2013.

    Google Scholar 

  4. Keto, C.J. and Freedland, S.J., A risk-stratified approach to prostate-specific antigen screening, Eur. Urol., 2011, vol. 59, no. 4, pp. 506–508.

    Article  PubMed  Google Scholar 

  5. Hoffman, R.M., Screening for prostate cancer, N. Engl. J. Med., 2011, vol. 365, no. 21, pp. 2013–2019.

    Article  CAS  PubMed  Google Scholar 

  6. Loeb, S., Bjurlin, M.A., Nicholson, J., et al., Overdiagnosis and overtreatment of prostate cancer, Eur. Urol., 2014, vol. 65, no. 6, pp. 1046–1055.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cannistraci, A., Di Pace, A.L., De Maria, R., and Bonci, D., MicroRNA as new tools for prostate cancer risk assessment and therapeutic intervention: results from clinical data set and patients’ samples, BioMed. Res. Int., 2014. doi: 10.1155/2014/146170

    Google Scholar 

  8. Chissov, V.I., Starinskii, V.V., and Petrova, G.V., Sostoyanie onkologicheskoi pomoshchi naseleniyu Rossii v 2011 (The State of Oncological Care in Russia 2011), Moscow: Mosk. Nauchno-Issled. Onkol. Inst., 2012. ISBN 978-5-85502-170-7

    Google Scholar 

  9. Coppola, V., De Maria, R., and Bonci, D., MicroRNAs and prostate cancer, Endocr.-Relat. Cancer, 2010, vol. 17, no. 1, pp. 1–17.

    Article  CAS  Google Scholar 

  10. Zhang, B. and Farwell, M.A., MicroRNAs: a new emerging class of players for disease diagnostics and gene therapy, J. Cell. Mol. Med., 2008, vol. 12, no. 1, pp. 3–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gangaraju, V.K. and Lin, H., MicroRNAs: key regulators of stem cells, Nat. Rev. Mol. Cell Biol., 2009, vol. 10, no. 2, pp. 116–125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hassan, O., Ahmad, A., Sethi, S., and Sarkar, F.H., Recent updates on the role of microRNAs in prostate cancer, J. Hematol. Oncol., 2009. doi: 10.1186/1756-8722-5-9.

    Google Scholar 

  13. Pang, Y., Young, C.Y.F., and Yuan, H., MicroRNAs and prostate cancer, Acta Biochim. Biophys. Sin., 2010, vol. 42, no. 6, pp. 363–369.

    Article  CAS  PubMed  Google Scholar 

  14. Kolesnikov, N.N., Titov, S.E., Veryaskina, Yu.A., et al., MicroRNA, evolution and cancer, Tsitologiya, 2013, vol. 55, no. 3, pp. 159–164.

    CAS  Google Scholar 

  15. Sita-Lumsden, A., Dart, D.A., Waxman, J., and Bevan, C.L., Circulating microRNAs as potential new biomarkers for prostate cancer, Brit. J. Cancer, 2013, vol. 108, no. 10, pp. 1925–1930.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rogaev, E.I., Borinskaya, S.A., Islamgulov, D.V., and Grigorenko, A.P., Human microRNA in norm and pathology, Mol. Biol. (Moscow), 2008, vol. 42, no. 5, pp. 668–680.

    Article  CAS  Google Scholar 

  17. Catto, J.W., Alcaraz, A., Bjartell, A.S., et al., MicroRNA in prostate, bladder, and kidney cancer: a systematic review, Eur. Urol., 2011, vol. 59, no. 5, pp. 671–681.

    Article  CAS  PubMed  Google Scholar 

  18. Wiklund, E.D., Bramsen, J.B., Hulf, T., et al., Coordinated epigenetic repression of the miR200 family and miR205 in invasive bladder cancer, Int. J. Cancer, 2011, vol. 128, no. 6, pp. 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  19. John, B., Enright, A.J., Aravin, A., et al., Human microRNA targets, PLoS Biol., 2004, vol. 2, no. 11, p. 363

    Article  CAS  Google Scholar 

  20. Miranda, K.C., Huynh, T., Tay, Y., et al., A patternbased method for the identification of microRNA binding sites and their corresponding heteroduplexes, Cell, 2006, vol. 126, no. 6, pp. 1203–1217.

    Article  CAS  PubMed  Google Scholar 

  21. Heneghan, H.M., Miller, N., and Kerin, M.J., miRNAs as biomarkers and therapeutic targets in cancer, Curr. Opin. Pharmacol., 2010, vol. 10, no. 5, pp. 543–550.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, R. and Ambros, V., An extensive class of small RNAs in Caenorhabditis elegans, Science, 2001, vol. 294, no. 5543, pp. 862–864.

    Article  CAS  PubMed  Google Scholar 

  23. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T., Identification of novel genes coding for small expressed RNAs, Science, 2001, vol. 294, no. 5543, pp. 853–858.

    Article  CAS  PubMed  Google Scholar 

  24. Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P., An abundant class of tiny RNAs with probable regulatory roles in C. elegans, Science, 2001, vol. 294, no. 5543, pp. 858–862.

    Article  CAS  PubMed  Google Scholar 

  25. Ying, S.Y. and Lin, S.L., Intron-derived microRNAs-fine tuning of gene functions, Gene, 2004, vol. 342, no. 1, pp. 25–28.

    Article  CAS  PubMed  Google Scholar 

  26. Katokhin, A.V., Kuznetsova, T.N., and Omel’yanchuk, N.A., miRNA-new regulators of genes activity in eukaryotes, Inform. Vestn. VOGiS, 2006, vol. 10, no. 2, pp. 241–272.

    Google Scholar 

  27. Fletcher, C.E., Dart, D.A., and Bevan, C.L., Interplay between steroid signalling and microRNAs: implications for hormone-dependent cancers, Endocr.-Relat. Cancer, 2014, vol. 21, no. 5, pp. 409–429.

    Article  CAS  Google Scholar 

  28. Wightman, B., Burglin, T., Gatto, J., et al., Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development, Genes Dev., 1991, vol. 5, no. 10, pp. 1813–1824.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, R.C., Feinbaum, R.L., and Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 1993, vol. 75, no. 5, pp. 843–854.

    Article  CAS  PubMed  Google Scholar 

  30. Wightman, B., Ha, I., and Ruvkun, G., Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, 1993, vol. 75, no. 5, pp. 855–862.

    Article  CAS  PubMed  Google Scholar 

  31. Reinhart, B., Slack, F., Basson, M., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 2000, vol. 403, no. 6772, pp. 901–906.

    Article  CAS  PubMed  Google Scholar 

  32. Eda, A., Takahashi, M., Fukushima, T., and Hohjoh, H., Alteration of microRNA expression in the process of mouse brain growth, Gene, 2011, vol. 485, no. 1, pp. 46–52.

    Article  CAS  PubMed  Google Scholar 

  33. Nissan, X., Denis, J.A., Saidani, M., et al., miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification, Dev. Biol., 2011, vol. 356, no. 2, pp. 506–515.

    Article  CAS  PubMed  Google Scholar 

  34. Ambros, V., Bartel, B., Bartel, D.P., et al., A uniform system for microRNA annotation, RNA, 2003, vol. 9, no. 3, pp. 277–279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Fedyanin, M.Yu., Ignatova, E.O., and Tyulyandin, S.A., Role of microRNAs in solid tumors, Zlokach. Opukholi, 2013, no. 1, pp. 3–14.

    Google Scholar 

  36. Casanova-Salas, I., Rubio-Briones, J., Fernández-Serra, A., and López-Guerrero, J.A., miRNAs as biomarkers in prostate cancer, Clin. Transl. Oncol., 2012, vol. 14, no. 11, pp. 803–811.

    Article  CAS  PubMed  Google Scholar 

  37. Kiselev, F.L., MicroRNA and cancer, Mol. Biol. (Moscow), 2014, vol. 48, no. 2, pp. 232–242.

    Google Scholar 

  38. Schee, K., Fodstad Ø., and Flatmark, K., microRNAs as biomarkers in colorectal cancer, Am. J. Pathol., 2010, vol. 177, no. 4, pp. 1592–1599.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Huang, X., Liang, M., Dittmar, R., and Wang, L., Extracellular microRNAs in urologic malignancies: chances and challenges, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 14785–14799.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Zhang, B., Pan, X., Cobb, GP., and Anderson, T.A., MicroRNAs as oncogenes and tumor suppressors, Dev. Biol., 2007, vol. 302, no. 1, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  41. Volinia, S., Calin, G.A., Liu, C.G., et al., A microRNA expression signature of human solid tumors defines cancer gene targets, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 7, pp. 2257–2261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lu, J., Getz, G., Miska, E.A., et al., MicroRNA expression profiles classify human cancer, Nature, 2005, vol. 435, no. 7043, pp. 834–838.

    Article  CAS  PubMed  Google Scholar 

  43. Krutovskikh, V.A. and Aushev, V.N., MicroRNAs in the diagnosis and treatment of cancer, Med. Genet., 2012, no. 7, pp. 13–16.

    Google Scholar 

  44. Iorio, M.V., Ferracin, M., Liu, C.-G., et al., MicroRNA gene expression deregulation in human breast cancer, Cancer Res., 2005, vol. 65, no. 16, pp. 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  45. Mattie, M.D., Benz, C.C., Bowers, J., et al., Optimized highthroughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies, Mol. Cancer, 2006, vol. 5, no. 1, p. 24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Heneghan, H.M., Miller, N., Lowery, A.J., et al., MicroRNAs as novel biomarkers for breast cancer, J. Oncol., 2009, vol. 2010. doi: 10.1155/2010/950201

  47. Lowery, A.J., Miller, N., McNeill, R.E., and Kerin, M.J., MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management, Clin. Cancer Res., 2008, vol. 14, no. 2, pp. 360–365.

    Article  CAS  PubMed  Google Scholar 

  48. Calin, G.A., Dumitru, C.D., Shimizu, M., et al., Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 24, pp. 15524–15529.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Faber, C., Horst, D., Hlubek, F., and Kirchner, T., Overexpression of Dicer predicts poor survival in colorectal cancer, Eur. J. Cancer, 2011, vol. 47, no. 9, pp. 1414–1419.

    Article  CAS  PubMed  Google Scholar 

  50. Porkka, K.P., Pfeiffer, M.J., Waltering, K.K., et al., MicroRNA expression profiling in prostate cancer, Cancer Res., 2007, vol. 67, no. 13, pp. 6130–6135.

    Article  CAS  PubMed  Google Scholar 

  51. He, L., Yao, H., Fan, L., et al., MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3, Genet. Mol. Res., 2012, vol. 12, no. 2, pp. 1012–1021.

    Article  CAS  Google Scholar 

  52. Reis, S.T., Pontes-Junior, J., Antunes, A.A., et al., miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer, BMC Urol., 2012, vol. 12, no. 1, p. 14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Li, T., Li, D., Sha, J., et al., MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells, Biochem. Biophys. Res. Commun., 2009, vol. 383, no. 3, pp. 280–285.

    Article  CAS  PubMed  Google Scholar 

  54. Schramedei, K., Mörbt, N., Pfeifer, G., et al., MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4, Oncogene, 2011, vol. 30, no. 26, pp. 2975–2985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Shi, G.H., Ye, D.W., Yao, X.D., et al., Involvement of microRNA-21 in mediating chemoresistance to docetaxel in androgen-independent prostate cancer PC3 cells, Acta Pharmacol. Sin., 2010, vol. 31, no. 7, pp. 867–873.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Poliseno, L., Salmena, L., Riccardi, L., et al., Identifi- cation of the miR-106b-25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation, Sci. Signaling, 2010, vol. 3, no. 117, p. 29. doi: 10.1126/scisignal.2000594

    Article  CAS  Google Scholar 

  57. Kim, J.K., Choi, K.J., Lee, M., et al., Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer and microRNA-221 molecular beacon-conjugated nanoparticle, Biomaterials, 2012, vol. 33, no. 1, pp. 207–217.

    Article  CAS  PubMed  Google Scholar 

  58. Hudson, R.S., Yi, M., Esposito, D., et al., MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer, Oncogene, 2012, vol. 32, no. 35, pp. 4139–4147.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Sun, D., Layer, R., Mueller, A.C., et al., Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells, Oncogene, 2014, vol. 33, no. 11, pp. 1448–1457.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Shi, X.B., Xue, L., Yang, J., et al., An androgen-regulated miRNA suppresses BAK1 expression and induces androgen-independent growth of prostate cancer cells, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 50, pp. 19983–19988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Shi, X.B., Xue, L., Ma, A.H., et al., miR-125b pro-motes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes, Prostate, 2011, vol. 71, no. 5, pp. 538–549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Bonci, D., Coppola, V., Musumeci, M., et al., The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities, Nat. Med., 2008, vol. 14, no. 11, pp. 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  63. Aqeilan, R.I., Calin, G.A., and Croce, C.M., miR-15a and miR-16-1 in cancer: discovery, function and future perspectives, Cell Death Differ., 2010, vol. 17, no. 2, pp. 215–220.

    Article  CAS  PubMed  Google Scholar 

  64. Yu, J.J. and Xia, S.J., Novel role of microRNAs in prostate cancer, Chin. Med. J., 2013, vol. 126, no. 15, pp. 2960–2964.

    CAS  PubMed  Google Scholar 

  65. Majid, S., Dar, A.A., Saini, S., et al., MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer, Cancer, 2010, vol. 116, no. 24, pp. 5637–5649.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Verdoodt, B., Neid, M., Vogt, M., et al., MicroRNA-205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer, Int. J. Oncol., 2013, vol. 43, no. 1, pp. 307–314.

    CAS  PubMed  Google Scholar 

  67. Chiyomaru, T., Yamamura, S., Fukuhara, S., et al., Genistein upregulates tumor suppressor microRNA-574-3p in prostate cancer, PLoS One, 2013, vol. 8, no. 3, p. 58929. doi 10.1371/journal.pone.0058929

    Article  CAS  Google Scholar 

  68. Nanta, R., Kumar, D., Meeker, D., et al., NVP-LDE-225 (erismodegib) inhibits epithelial-mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2 null mice by regulating Bmi-1 and microRNA-128, Oncogenesis, 2013, vol. 2, no. 4, p. 42.

    Article  CAS  Google Scholar 

  69. Cortez, M.A., Bueso-Ramos, C., Ferdin, J., et al., MicroRNAs in body fluids-the mix of hormones and biomarkers, Nat. Rev. Clin. Oncol., 2011, vol. 8, no. 8, pp. 467–477.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Taylor, D.D. and Gercel-Taylor, C., MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer, Gynecol. Oncol., 2008, vol. 110, no. 1, pp. 13–21.

    Article  CAS  PubMed  Google Scholar 

  71. Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al., Circulating microRNAs as stable blood-based markers for cancer detection, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 30, pp. 10513–10518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ambs, S., Prueitt, R.L., Yi, M., et al., Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer, Cancer Res., 2008, vol. 68, no. 15, pp. 6162–6170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Martens-Uzunova, E.S., Jalava, S.E., Dits, N.F., et al., Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer, Oncogene, 2012, vol. 31, no. 8, pp. 978–991.

    Article  CAS  PubMed  Google Scholar 

  74. Larne, O., Martens-Uzunova, E., Hagman, Z., et al., miQ-a novel microRNA based diagnostic and prognostic tool for prostate cancer, Int. J. Cancer, 2013, vol. 132, no. 12, pp. 2867–2875.

    Article  CAS  PubMed  Google Scholar 

  75. Moltzahn, F., Olshen, A.B., Baehner, L., et al., Microfluidicbased multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients, Cancer Res., 2011, vol. 71, no. 2, pp. 550–560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bryant, R.J., Pawlowski, T., Catto, J.W., et al., Changes in circulating microRNA levels associated with prostate cancer, Brit. J. Cancer, 2012, vol. 106, no. 4, pp. 768–774.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Srivastava, A., Goldberger, H., Dimtchev, A., et al., MicroRNA profiling in prostate cancer-the diagnostic potential of urinary miR-205 and miR-214, PLoS One, 2013, vol. 8, no. 10, p. 76994

    Article  CAS  Google Scholar 

  78. Haj-Ahmad, T.A., Abdalla, M.A.K., and HajAhmad, Y., Potential urinary miRNA biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients, J. Cancer, 2014, vol. 5, no. 3, pp. 182–191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Schaefer, A., Jung, M., Mollenkopf, H.-J., et al., Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma, Int. J. Cancer, 2010, vol. 126, no. 5, pp. 1166–1176.

    CAS  PubMed  Google Scholar 

  80. Wei, Z., Cui, L., Mei, Z., et al., miR-181a mediates metabolic shift in colon cancer cells via the PTEN/AKT pathway, FEBS Lett., 2014, vol. 588, no. 9, pp. 1773–1779.

    Article  CAS  PubMed  Google Scholar 

  81. Hou, T., Ou, J., Zhao, X., et al., MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1, Brit. J. Cancer, 2014, vol. 110, no. 5, pp. 1260–1268.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Ozen, M., Creighton, C.J., Ozdemir, M., and Ittmann, M., Widespread deregulation of microRNA expression in human prostate cancer, Oncogene, 2008, vol. 27, no. 12, pp. 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  83. Saini, S., Majid, S., and Dahiya, R., Diet, microRNAs and prostate cancer, Pharm. Res., 2010, vol. 27, no. 6, pp. 1014–1026.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ribas, J., Ni, X., Haffner, M., et al., miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth, Cancer. Res., 2009, vol. 69, no. 18, pp. 7165–7169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Zaman, M.S., Chen, Y., Deng, G., et al., The functional significance of microRNA-145 in prostate cancer, Brit. J. Cancer, 2010, vol. 103, no. 2, pp. 256–264.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Peng, X., Guo, W., Liu, T., et al., Identification of miRs-143 and-145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT, PLoS One, 2011, vol. 6, no. 5, p. 20341

    Article  CAS  Google Scholar 

  87. Brase, J.C., Johannes, M., Schlomm, T., et al., Circulating miRNAs are correlated with tumor progression in prostate cancer, Int. J. Cancer, 2011, vol. 128, no. 3, pp. 608–616.

    Article  CAS  PubMed  Google Scholar 

  88. Yaman-Agaoglu, F., Kovancilar, M., Dizdar, Y., et al., Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer, Tumour Biol., 2011, vol. 32, no. 3, pp. 583–588.

    Article  CAS  PubMed  Google Scholar 

  89. Watahiki, A., Wang, Y., Morris, J., et al., MicroRNAs associated with metastatic prostate cancer, PLoS One, 2011, vol. 6, no. 9, p. 24950

    Article  CAS  Google Scholar 

  90. Saini, S., Majid, S., Yamamura, S., et al., Regulatory role of miR-203 in prostate cancer progression and metastasis, Clin. Cancer Res., 2011, vol. 17, no. 16, pp. 5287–5298.

    Article  CAS  PubMed  Google Scholar 

  91. Wang, L., Tang, H., Thayanithy, V., et al., Gene networks and microRNAs implicated in aggressive prostate cancer, Cancer Res., 2009, vol. 69, no. 24, pp. 9490–9497.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Bex, A., Translating translational repression: evolving possibilities in uro-oncology, Eur. Urol., 2011, vol. 59, no. 5, pp. 682–683.

    Article  PubMed  Google Scholar 

  93. Tong, A.W., Fulgham, P., Jay, C., et al., MicroRNA profile analysis of human prostate cancers, Cancer Gene Ther., 2009, vol. 16, no. 3, pp. 206–216.

    CAS  PubMed  Google Scholar 

  94. Hulf, T., Sibbritt, T., Wiklund, E.D., et al., Epigeneticinduced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer, Oncogene, 2013, vol. 32, no. 23, pp. 2891–2899.

    Article  CAS  PubMed  Google Scholar 

  95. Schubert, M., Spahn, M., Kneitz, S., et al., Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer, PLoS One, 2013, vol. 8, no. 6, p. 65064

    Article  CAS  Google Scholar 

  96. Leite, K.R.M., Tomiyama, A., Reis, S.T., et al., MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer, J. Urol., 2011, vol. 185, no. 3, pp. 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  97. Karatas, O.F., Guzel, E., Suer, I., et al., miR-1 and miR-133b are differentially expressed in patients with recurrent prostate cancer, PLoS One, 2014, vol. 9, no. 6, p. 98675

    Article  CAS  Google Scholar 

  98. Selth, L.A., Townley, S.L., Bert, A.G., et al., Circulating microRNAs predict biochemical recurrence in prostate cancer patients, Brit. J. Cancer, 2013, vol. 109, no. 3, pp. 641–650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Shen, J., Hruby, G.W., McKiernan, J.M., et al., Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer, Prostate, 2012, vol. 72, no. 13, pp. 1469–1477.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Jalava, S.E., Urbanucci, A., Latonen, L., et al., Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer, Oncogene, 2012, vol. 31, no. 41, pp. 4460–4471.

    Article  CAS  PubMed  Google Scholar 

  101. Nguyen, H.C., Xie, W., Yang, M., et al., Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer, Prostate, 2013, vol. 73, no. 4, pp. 346–354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Zhang, H.-L., Yang, L.-F., Zhu, Y., et al., Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy, Prostate, 2011, vol. 71, no. 3, pp. 326–331.

    Article  CAS  PubMed  Google Scholar 

  103. Steele, R., Mott, J.L., and Ray, R.B., MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells, Genes Cancer, 2010, vol. 1, no. 4, pp. 381–387.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Ru, P., Steele, R., Newhall, P., et al., miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling, Mol. Cancer Ther., 2012, vol. 11, no. 5, pp. 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  105. Liu, Y.N., Yin, J.J., Abou-Kheir, W., et al., miR-1 and miR-200 inhibit EMT via slug-dependent and tumorigenesis via slug-independent mechanisms, Oncogene, 2013, vol. 32, no. 3, pp. 296–306.

    Article  CAS  PubMed  Google Scholar 

  106. Kong, D., Li, Y., Wang, Z., et al., miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells, Stem Cells, 2009, vol. 27, no. 8, pp. 1712–1721.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Fayyaz, S. and Farooqi, A.A., miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells, Immunogenetics, 2013, vol. 65, no. 5, pp. 315–332.

    Article  CAS  PubMed  Google Scholar 

  108. Gordanpour, A., Stanimirovic, A., Nam, R.K., et al., miR-221 is down-regulated in TMPRSS2:ERG fusion-positive prostate cancer, Anticancer Res., 2011, vol. 31, no. 2, pp. 403–410.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Szczyrba, J., Nolte, E., Wach, S., et al., Downregulation of Sec23A protein by miRNA-375 in prostate carcinoma, Mol. Cancer Res., 2011, vol. 9, no. 6, pp. 791–800.

    Article  CAS  PubMed  Google Scholar 

  110. Gonzales, J.C., Fink, L.M., Goodman, O.B., Jr., et al., Comparison of circulating microRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer, Clin. Genitourin Cancer, 2011, vol. 9, no. 1, pp. 39–45.

    Article  PubMed  Google Scholar 

  111. Gumireddy, K., Young, D.D., Xiong, X., et al., Small-molecule inhibitors of microRNA miR-21 function, Angew. Chem. Int. Ed. Engl., 2008, vol. 47, no. 39, pp. 7482–7484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Bhardwaj, A., Singh, S., and Singh, A.P., MicroRNA-based cancer therapeutics: big hope from small RNAs, Mol. Cell Pharmacol., 2010, vol. 2, no. 5, pp. 213–219.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Sun, T., Wang, Q., Balk, S., et al., The role of microRNA-221 and microRNA-222 in androgenindependent prostate cancer cell lines, Cancer Res., 2009, vol. 69, no. 8, pp. 3356–3363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Ren, D., Wang, M., Guo, W., et al., Double-negative feedback loop between ZEB2 and mir-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells, Cell Tissue Res., 2014, vol. 358, no. 3, pp. 763–778.

    Article  CAS  PubMed  Google Scholar 

  115. Szafranska-Schwarzbach, A.E., Adai, A.T., Lee, L.S., et al., Development of a miRNA-based diagnostic assay for pancreatic ductal adenocarcinoma, Expert Rev. Mol. Diagn., 2011, vol. 11, no. 3, pp. 249–257.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Kunsbaeva.

Additional information

These authors contributed equally to this work.

Original Russian Text © G.B. Kunsbaeva, I.R. Gilyazova, V.N. Pavlov, E.K. Khusnutdinova, 2015, published in Genetika, 2015, Vol. 51, No. 7, pp. 737–753.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunsbaeva, G.B., Gilyazova, I.R., Pavlov, V.N. et al. The role of miRNAs in the development of prostate cancer. Russ J Genet 51, 627–641 (2015). https://doi.org/10.1134/S102279541507008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541507008X

Keywords

Navigation