Skip to main content
Log in

Temperature dependence of the structure of a carbosilane dendrimer with terminal cyanobiphenyl groups: Molecular-dynamics simulation

  • Simulation
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The molecular-dynamics simulation of the structure and molecular mobility of an individual macromolecule of a fourth-generation carbosilane dendrimer with terminal cyanobiphenyl groups in a highly diluted chloroform solution in the range 213–323 K is performed. Upon a change in temperature, the dendrimer undergoes structural rearrangement that depends on the ability of terminal segments to penetrate into the dendrimer. At temperatures close to the boiling point of the solvent, aliphatic spacers of terminal segments can penetrate deep into the dendrimer. As temperature decreases, the terminal segments are grouped only on the surface of the molecule; this leads to a 45% increase in the number of solvent molecules in the treelike part of the macromolecule. These results make it possible to give a new interpretation of temperature effects previously observed in NMR experiments for dilute solutions of these macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. J. Frechet and D. A. Tomalia, Dendrimers and Other Dendritric Polymers (Wiley, New York, 2002).

    Google Scholar 

  2. F. Vogtle, G. Richardt, and N. Werner, Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications (Wiley, Weinheim, 2009).

    Google Scholar 

  3. A. M. Muzafarov and E. A. Rebrov, Adv. Silicon Sci. 2, 21 (2009).

    Article  CAS  Google Scholar 

  4. V. Domenici, M. Cifelli, C. A. Veracini, N. I. Boiko, E. V. Agina, and V. P. Shibaev, J. Phys. Chem. B 112, 14718 (2008).

    Article  CAS  Google Scholar 

  5. I. Leshchiner, E. Agina, N. Boiko, R. M. Richardson, K. J. Edler, and V. P. Shibaev, Langmuir 24, 11082 (2008).

    Article  CAS  Google Scholar 

  6. V. Domenici, Phys. Chem. Chem. Phys. 11, 8496 (2009).

    Article  CAS  Google Scholar 

  7. M. R. Wilson, J. M. Ilnytskyi, and L. M. Stimson, J. Chem. Phys. 119, 3509 (2003).

    Article  CAS  Google Scholar 

  8. Z. E. Hughes, M. R. Wilson, and L. M. Stimson, Soft Matter 1, 436 (2005).

    Article  CAS  Google Scholar 

  9. A. I. Sagidullin, A. M. Muzafarov, M. A. Kryakin, A. N. Ozerin, V. D. Skirda, and G. M. Ignat’eva, Macromolecules 35, 9472 (2002).

    Article  CAS  Google Scholar 

  10. S. A. Ponomarenko, N. I. Boiko, V. P. Shibaev, R. M. Richardson, I. J. Whitehouse, E. A. Rebrov, and A. M. Muzafarov, Macromolecules 33, 5549 (2000).

    Article  CAS  Google Scholar 

  11. E. V. Agina, S. A. Ponomarenko, N. I. Boiko, E. A. Rebrov, A. M. Muzafarov, and V. P. Shibaev, Polymer Science, Ser. A 43, 1000 (2001).

    Google Scholar 

  12. S. A. Ponomarenko, E. A. Rebrov, N. I. Boiko, A. M. Muzafarov and V. P. Shibaev, Polymer Science, Ser. A 40, 763 (1998).

    Google Scholar 

  13. A. V. Lezov, G. E. Polushina, M. E. Mikhailova, E. A. Rebrov, A. M. Muzafarov, and E. I. Ryumtsev, Zh. Fiz. Khim. 77, 1050 (2003).

    CAS  Google Scholar 

  14. A. V. Lezov, A. B. Mel’nikov, G. E. Polushina, E. A. Antonov, M. E. Novitskaya, N. I. Boiko, S. A. Ponomarenko, E. A. Rebrov, V. P. Shibaev, E. I. Ryumtsev, and A. M. Muzafarov, Dokl. Akad. Nauk 381, 69 (2001).

    CAS  Google Scholar 

  15. A. P. Kovshik, D. A. Ragimov, S. A. Kovshik, N. I. Boiko, A. V. Lezov, and E. I. Ryumtsev, Zh. Fiz. Khim. 77, 1041 (2003).

    CAS  Google Scholar 

  16. D. A. Markelov, V. V. Matveev, P. Ingman, E. Lahderanta, and N. I. Boiko, J. Chem. Phys. 135, 124901 (2011).

    Article  Google Scholar 

  17. Yu. Ya. Gotlib and D. A. Markelov, Polymer Science, Ser. A 49, 1137 (2007).

    Article  Google Scholar 

  18. D. A. Markelov, Yu. Ya. Gotlib, A. A. Darinskii, A. V. Lyulin, and S. V. Lyulin, Polymer Science, Ser. A 51, 331 (2009).

    Article  Google Scholar 

  19. D. A. Markelov, S. V. Lyulin, Yu. Ya. Gotlib, A. V. Lyulin, V. V. Matveev, E. Lahderanta, and A. A. Darinskii, J. Chem. Phys. 130, 044907 (2009).

    Article  Google Scholar 

  20. D. A. Markelov, V. V. Matveev, P. Ingman, M. N. Nikolaeva, E. Lahderanta, V. A. Shevelev, and N. I. Boiko, J. Phys. Chem. B 114, 4159 (2010).

    Article  CAS  Google Scholar 

  21. P. G. De Gennes and H. Hervet, J. Phys. Lett. 44, 351 (1983).

    Article  Google Scholar 

  22. D. A. Tomalia, A. M. Naylor, and W. A. Goddard, Angew. Chem., Int. Ed. Engl. 29, 138 (1990).

    Article  Google Scholar 

  23. M. L. Mansfield and L. Klushin, Macromolecules 26, 4262 (1993).

    Article  CAS  Google Scholar 

  24. M. Murat and G. S. Grest, Macromolecules 29, 1278 (1996).

    Article  CAS  Google Scholar 

  25. M. A. Mazo, S. S. Sheiko, N. S. Perov, E. B. Gusarova, and N. K. Balabaev, Izv. Akad. Nauk, Ser. Fiz. 61, 1728 (1997).

    CAS  Google Scholar 

  26. M. A. Mazo, M. Yu. Shamaev, N. K. Balabaev, A. A. Darinskii, and I. M. Neelov, Phys. Chem. Chem. Phys. 6, 1285 (2004).

    Article  CAS  Google Scholar 

  27. A. W. Bosman, H. M. Janssen, and E. W. Meijer, Chem. Rev. 99, 1665 (1999).

    Article  CAS  Google Scholar 

  28. M. A. Mazo, N. S. Perov, E. B. Gusarova, P. A. Zhulin, and N. K. Balabaev, Zh. Fiz. Khim. 74, S52 (2000).

    Google Scholar 

  29. P. Welch and M. Muthukumar, Macromolecules 31, 5892 (1998).

    Article  CAS  Google Scholar 

  30. Y. Liu, V. S. Bryantsev, M. S. Diallo, and W. A. Goddard, J. Am. Chem. Soc. 131, 2798 (2009).

    Article  CAS  Google Scholar 

  31. C. Lach, D. Brizzolara, and H. Frey, Macromol. Theory Simul. 6, 371 (1997).

    Article  CAS  Google Scholar 

  32. M. Wander, R. J. M. K. Gebbink, and G. Van Koten, Adv. Silicon Sci. 2, 197 (2009).

    Article  CAS  Google Scholar 

  33. C.-F. Li, F. Jin, X.-Z. Dong, W.-Q. Chen, and X.-M. Duan, J. Lumin. 127, 321 (2007).

    Article  CAS  Google Scholar 

  34. D. E. Gal’perin, V. A. Ivanov, M. A. Mazo, and A. R. Khokhlov, Polymer Science, Ser. A 47, 61 (2005).

    Google Scholar 

  35. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004).

    Article  CAS  Google Scholar 

  36. J. S. Smith, O. Borodin, and G. D. Smith, J. Phys. Chem. B 108, 20340 (2004).

    Article  CAS  Google Scholar 

  37. D. L. Cheung, S. J. Clark, and M. R. Wilson, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 65, 051709 (2002).

    Article  CAS  Google Scholar 

  38. H. J. C. Berendsen, J. P. M. Postma, W. F. Gunsteren, A. Di Nola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  39. A. S. Lemak and N. K. Balabaev, Mol. Simul. 13, 177 (1994).

    Article  CAS  Google Scholar 

  40. N. K. Balabaev and A. S. Lemak, Proc. SPIE-Int. Soc. Opt. Eng. 192, 375 (1993).

    Article  Google Scholar 

  41. A. V. Lyulin, G. R. Davies, and D. B. Adolf, Macromolecules 33, 6899 (2000).

    Article  CAS  Google Scholar 

  42. S. V. Lyulin, L. J. Evers, P. Van der Schoot, A. A. Darinskii, A. V. Lyulin, and M. A. J. Michels, Macromolecules 37, 3049 (2004).

    Article  CAS  Google Scholar 

  43. A. I. Amirova, E. V. Belyaeva, E. B. Tarabukina, N. A. Sheremet’eva, A. M. Muzafarov, and A. P. Filippov, Polymer Science, Ser. C 52, 70 (2010).

    Article  Google Scholar 

  44. S. V. Lyulin, E. V. Reshetnikov, A. A. Darinskii, and A. V. Lyulin, Polymer Science, Ser. A 53, 837 (2011).

    Article  CAS  Google Scholar 

  45. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy (Pergamon, Oxford, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Markelov.

Additional information

Original Russian Text © D.A. Markelov, M.A. Mazo, N.K. Balabaev, Yu.Ya. Gotlib, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2013, Vol. 55, No. 1, pp. 53–61.

This work was supported by the Russian Foundation for Basic Research, project nos. 12-03-31243-mol_a, 11-03-90708-mob_st, 12-03-33155-mol_a_ved, and 11-03-00944-a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markelov, D.A., Mazo, M.A., Balabaev, N.K. et al. Temperature dependence of the structure of a carbosilane dendrimer with terminal cyanobiphenyl groups: Molecular-dynamics simulation. Polym. Sci. Ser. A 55, 53–60 (2013). https://doi.org/10.1134/S0965545X13010045

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13010045

Keywords

Navigation