Skip to main content
Log in

Collective effects in molecular motions in liquids

  • Materials of Jubilee 250th National Workshop on Studying the Structures of Liquids and Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The collective effects in water were studied by investigating the spatial distribution of long-living hydrogen bonds and revealing correlations in molecular motions. The existence of extended clusters, whose molecules are linked by long-living bonds, suggests the existence of correlations between the motions of its molecules. The mean scalar products of the shift vectors of two molecules were calculated using the narrow ranges (DP) of intermolecular distances in the initial configuration. The average correlation coefficients (the cosines of angles between the shift vectors of two molecules) were also calculated. The DP and cosine values were averaged over all pairs with this intermolecular distance. The DP values increased with time and formed a plateau after a few hundred picoseconds. The plateau was attributed to the existence of molecular vortices that cover large (several nanometers) volumes of the liquid. The conclusion was drawn that hydrophobic species, for example, noble gas atoms incorporated in the water net could be involved in collective motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Tringides and Z. Chvoj, Collective Diffusion on Surfaces: Correlation Effects and Adatom Interactions (Springer, New York, 2001).

    Book  Google Scholar 

  2. J. Merikoski and S. C. Ying, Phys. Rev. B: Condens. Matter Mater. Phys. 56, 2166 (1997).

    Article  CAS  Google Scholar 

  3. A. G. Naumovets, Physica A (Amsterdam) 357, 189 (2005).

    Article  Google Scholar 

  4. T. Ala-Nissilay, R. Ferrando, and S. C. Ying, Adv. Phys. 51, 949 (2002).

    Article  Google Scholar 

  5. L. Galantini and N. V. Pavel, J. Chem. Phys. 118, 2865 (2003).

    Article  CAS  Google Scholar 

  6. W. R. Bowen and A. Mongruel, Colloids Surf., A 138, 161 (1998).

    Article  CAS  Google Scholar 

  7. U. Genz, Macromolecules 27, 3501 (1994).

    Article  CAS  Google Scholar 

  8. K-E. Larsson, J. Phys.: Condens. Matter 6, 2835 (1994).

    Article  CAS  Google Scholar 

  9. Z. Qin and G. E. Murch, Philos. Mag. A 68, 819 (1993).

    Article  CAS  Google Scholar 

  10. I. Ohmine, H. Tanaka, and P. G. Wolynes, Chem. Phys. 89, 5852 (1988).

    Google Scholar 

  11. D. Bertolini, A. Tani, and R. Vallauri, Mol. Phys. 73, 5852 (1991).

    Article  Google Scholar 

  12. M. Bee, Quasielastic Neutron Scattering. Principles and Applications in Solid State Chemistry, Biology, and Material Science (Adam Higler, Bristol, 1988).

    Google Scholar 

  13. V. S. Oskotskii, Fiz. Tv. Tela 5, 1082 (1963).

    CAS  Google Scholar 

  14. A. G. Novikov, M. N. Rodnikova, V. V. Savostin, and O. V. Sobolev, Zh. Fiz. Khim. 68, 1982 (1994).

    CAS  Google Scholar 

  15. V. P. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 48, 1066 (2007).

    Article  CAS  Google Scholar 

  16. G. G. Malenkov, Yu. I. Naberukhin, and V. P. Voloshin, Ross. Khim. Zh. 53(6), 25 (2009).

    CAS  Google Scholar 

  17. G. G. Malenkov, D. L. Tytik, and E. A. Zheligovskaya, J. Mol. Liq. 82, 27 (1999).

    Article  CAS  Google Scholar 

  18. G. G. Malenkov, Physica A (Amsterdam) 314, 477 (2002).

    Article  CAS  Google Scholar 

  19. G. G. Malenkov, D. L. Tytik, and E. A. Zheligovskaya, J. Mol. Liq. 106, 179 (2003).

    Article  CAS  Google Scholar 

  20. G. Malenkov, Yu. Naberukhin, and V. Voloshin, Struct. Chem. 22, 459 (2011).

    Article  CAS  Google Scholar 

  21. V. P. Voloshin, Yu. I. Naberukhin, and G. G. Malenkov, Strukt. Din. Mol. Sist., No. 10, 12 (2011).

  22. I. Z. Fisher, Zh. Eksp. Teor. Fiz. 6, 1647 (1971).

    Google Scholar 

  23. L. A. Bulavin, T. V. Lokotosh, and N. P. Malomuzh, J. Mol. Liq. 137, 1 (2008).

    Article  CAS  Google Scholar 

  24. N. K. Balabaev, Method of Molecular Dynamics in Physical Chemistry, Ed. by Yu. K. Tovbin (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  25. V. A. Poltev, N. A. Grokhlina, and G. G. Malenkov, J. Biomol. Struct. Dyn. 2, 421 (1984).

    Article  Google Scholar 

  26. G. G. Malenkov and E. A. Zheligovskaya, J. Incl. Phenom. Macrocycl. Chem. 48, 45 (2004).

    Article  CAS  Google Scholar 

  27. H. E. Stanley, J. Phys. A: Math. Gen. 12, L329 (1979).

    Article  CAS  Google Scholar 

  28. A. Geiger, F. H. Stillinger, and A. Rahman, J. Chem. Phys. 70, 4185 (1979).

    Article  CAS  Google Scholar 

  29. H. E. Stanley and J. Teixeira, Ferroelectrics 30, 213 (1980).

    Article  CAS  Google Scholar 

  30. H. E. Stanley and J. Teixeira, J. Chem. Phys. 73, 3404 (1980).

    Article  CAS  Google Scholar 

  31. G. G. Malenkov, J. Struct. Chem. 47, S1 (2006).

    Article  CAS  Google Scholar 

  32. G. Malenkov, J. Phys.: Condens. Matter 21, 283101 (2009).

    Article  Google Scholar 

  33. A. L. Efros, Physics and Geometry of Disorder (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  34. Yu. Yu. Tarasevich, Percolation: Theory, Applications, Algorithms, 2nd ed. (URSS, Moscow, 2012) [in Russian].

    Google Scholar 

  35. S. C. van der Marck, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 55, 1514 (1997).

    Article  Google Scholar 

  36. V. P. Voloshin and Y. I. Naberukhin, J. Struct. Chem. 50, 78 (2009).

    Article  CAS  Google Scholar 

  37. Y. I. Naberukhin and N. P. Voloshin, Z. Phys. Chem. 223, 1119 (2009).

    Article  CAS  Google Scholar 

  38. D. Bertolini, M. Cassettari, and G. Salvetti, J. Chem. Phys. 76, 3285 (1982).

    Article  CAS  Google Scholar 

  39. B. J. Alder and T. E. Wainwright, Phys. Rev. A: At., Mol., Opt. Phys. 1, 18 (1970).

    Article  Google Scholar 

  40. M. I. Kotelyanskii, M. A. Mazo, A. G. Grivtsov, and E. F. Oleinik, Preprint No. 2 88-12/23, OIKhF (Dep. Inst. Chem. Phys., Chernogolovka, 1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Malenkov.

Additional information

Original Russian Text © G.G. Malenkov, Yu.I. Naberukhin, V.P. Voloshin, 2012, published in Zhurnal Fizicheskoi Khimii, 2012, Vol. 86, No. 9, pp. 1485–1492.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malenkov, G.G., Naberukhin, Y.I. & Voloshin, V.P. Collective effects in molecular motions in liquids. Russ. J. Phys. Chem. 86, 1378–1384 (2012). https://doi.org/10.1134/S003602441209004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441209004X

Keywords

Navigation