Skip to main content
Log in

Modeling of the bis(glycinato)copper(ii) cis-trans isomerization process: Theoretical analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 52, No. 5, pp. 906-6-916, September-October, 2011. Original article submitted August 5, 2010. In a number of theoretical works, the cis-trans isomerization of bis(glycinato)copper(II) and its interaction with water molecules is investigated. The interactions with the water medium modeled either by adding water molecules explicitly or through the Polarized Continuum Model (PCM) are investigated by the density functional (B3LYP) method in order to question the reliability of theoretical results. The crucial dependence of theoretical energies on the accuracy of PCM corrections is established. It is shown that for bis(glycinato)copper(II) the differences of isomer energies are of the order of the upper limit of the reliability of PCM corrections. Based on the calculation results, two possible mechanisms for the cis-trans isomerization are proposed. It is shown that only the inclusion of two explicit water molecules enables the modeling of the isomerization mechanism involving the interchange of glycine and water oxygen atoms in copper coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Leopoldini, N. Russo, and M. Toscano, J. Am. Chem. Soc., 129, No. 25, 7776 (2007).

    Article  CAS  Google Scholar 

  2. M. J. Mate and C. Kleanthous, J. Biol. Chem., 279, No. 33, 34763 (2004).

    Article  CAS  Google Scholar 

  3. A. J. Nappi and E. Vass, Cell. Molec. Biol., 46, No. 3, 637 (2000).

    CAS  Google Scholar 

  4. L. M. Sayre, G. Perry, and M. A. Smith, Curr. Opin. Chem. Biol., 3, No. 2, 220 (1999).

    Article  CAS  Google Scholar 

  5. R. A. Sheldon and I. W. C. E. Arends, Adv. Synth. Catal., 346, Nos. 9/10, 1051 (2004).

    Article  CAS  Google Scholar 

  6. D. Choquesillo-Lazarte, M. d.P Brandi-Blanco, I. García-Santos, et al., Coord. Chem. Rev., 252, Nos. 10/11, 1241 (2008).

    Article  CAS  Google Scholar 

  7. A. Küsel, J. Zhang, M. A. Gil, et al., Eur. J. Inorg. Chem., 4317 (2005).

  8. K. Mirosavljević, J. Sabolović, and V. Noethig-Laslo, Eur. J. Inorg. Chem., 3930 (2004).

  9. E. Bešić, V. Gomzi, K. Sanković, et al., Spectrochim. Acta A, 61, 2803 (2004).

    Google Scholar 

  10. D. Krilov, A. Lekić, E. Bešić, et al., Fizika A, 14, 9 (2005).

    CAS  Google Scholar 

  11. P. E. M. Siegbahn and T. Borowski, Acc. Chem. Res., 39, No. 10, 729 (2006).

    Article  CAS  Google Scholar 

  12. J. Sabolović, C. S. Tautermann, T. Loerting, and K. R. Liedl, Inorg. Chem., 2268 (2003).

  13. J. Sabolović and V. Gomzi, J. Chem. Theor. Comput., 5, 1940–1954 (2009).

    Article  Google Scholar 

  14. P. D’Angelo, E. Bottari, M. R. Festa, et al., J. Phys. Chem. B, 102, No. 17, 3114 (1998).

    Article  Google Scholar 

  15. S. M. Moussa, R. R. Fenton, B. A. Hunter, and B. J. Kennedy, Aust. J. Chem., 55, No. 5, 331 (2002).

    Article  CAS  Google Scholar 

  16. T. Hattori, T. Toraishi, T. Tsuneda, et al., J. Phys. Chem. A, 109, 10403 (2005).

    Article  CAS  Google Scholar 

  17. M. Reiher, O. Salomon, and B. A. Hess, Theor. Chem. Acc., 107, 48 (2001).

    Article  CAS  Google Scholar 

  18. Y. Zhao and D. G. Truhlar, Theor. Chem. Account., 120, 215 (2008)

    Article  CAS  Google Scholar 

  19. R. J. Deeth, A. Anastasi, C. Diedrich, and K. Randell, Coord. Chem. Rev., 253, 795 (2009).

    Article  CAS  Google Scholar 

  20. T. J. M. deBruin, A. T. M. Marcelis, H. Zuilhof, and E. J. R. Sudhölter, Phys. Chem. Chem. Phys., 1, 4157 (1999).

    Article  CAS  Google Scholar 

  21. C. S. Tautermann, J. Sabolović, A. F. Voegele, and K. R. Liedl, J. Phys. Chem. B, 108, 2098 (2004).

    Article  CAS  Google Scholar 

  22. M. Pezzato, G. Della Lunga, M. C. Baratto, et al., Magn. Reson. Chem., 45, 846 (2007).

    Article  CAS  Google Scholar 

  23. A. D. Becke, Phys. Rev. A, 38, 3098 (1988).

    Article  CAS  Google Scholar 

  24. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

    Article  CAS  Google Scholar 

  25. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett., 157, 200 (1989).

    Article  CAS  Google Scholar 

  26. T. H. Dunning Jr. and P. J. Hay, in: Modern Theoretical Chemistry, III, Vol. 3, H. F. Schaefer (ed.), Plenum, New York (1976), pp. 1–28.

    Google Scholar 

  27. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 270 (1985)

    Google Scholar 

  28. W. R. Wadt and P. J. Hay, J. Chem. Phys., 82, 284 (1985)

    Article  CAS  Google Scholar 

  29. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 299 (1985).

    Article  CAS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT (2004).

    Google Scholar 

  31. J. Tomasi, B. Mennucci, and E. Cancès, J. Mol. Struct. (Theochem)., 464, 211 (1999).

    Article  CAS  Google Scholar 

  32. M. Cossi, G. Scalmani, N. Rega, and V. Barone, J. Chem. Phys., 117, 43 (2002).

    Article  CAS  Google Scholar 

  33. V. Barone, M. Cossi, and J. Tomasi, J. Chem. Phys., 107, No. 8, 3210 (1997).

    Article  CAS  Google Scholar 

  34. A. Dinescu and A. E. Clark, J. Phys. Chem. A, 112, 11198 (2008).

    Article  CAS  Google Scholar 

  35. Y. Takano and K. N. Houk, J. Chem. Theory Comput., 1, No. 1, 70 (2005).

    Article  Google Scholar 

  36. C. Beddie, C. E. Webster, and M. B. Hall, Dalton Trans., 3542 (2005).

  37. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comp. Chem., 17, 49 (1996).

    Article  CAS  Google Scholar 

  38. C. Peng and H. B. Schlegel, Israel. J. Chem., 33, 449 (1993).

    CAS  Google Scholar 

  39. B. W. Delf, R. D. Gillard, and P. O’Brien, J. Chem. Soc. Dalton Trans., 1301 (1979).

  40. C. Adamo, G. Scuseria, and V. Barone, J. Chem. Phys., 111, 2889 (1999).

    Article  CAS  Google Scholar 

  41. C. Adamo, M. Cossi, G. Scalmani, and V. Barone, Chem. Phys. Lett., 307, 265 (1999).

    Article  CAS  Google Scholar 

  42. C. Adamo and V. Barone, J. Chem. Phys., 110, 6158 (1999).

    Article  CAS  Google Scholar 

  43. A. E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983).

    Article  CAS  Google Scholar 

  44. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83, 735 (1985).

    Article  CAS  Google Scholar 

  45. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899 (1988).

    Article  CAS  Google Scholar 

  46. M. Cossi, N. Rega, G. Scalmani, and V. Barone, J. Comput. Chem., 24, 669 (2002).

    Article  Google Scholar 

  47. H. Yokoi and A. W. Addison, Inorg. Chem., 16, No. 6, 1314 (1977).

    Article  Google Scholar 

  48. P. J. Wang and H. G. Drickamer, J. Chem. Phys., 59, No. 1, 559 (1973).

    Article  CAS  Google Scholar 

  49. J. B. Foresman, T. A. Keith, K. B. Wiberg, et al., J. Phys. Chem., 100, 16098 (1996).

    Article  CAS  Google Scholar 

  50. J. Gažo, I. B. Bersuker, J. Garaj, et al., Coord. Chem. Rev., 19, 253 (1976).

    Article  Google Scholar 

  51. B. A. Goodman and D. B. McPhail, J. Chem. Soc. Dalton Trans., 1717 (1985).

  52. W. Massa, S. Dehghanpour, and K. Jahani, Inorg. Chim. Acta, 362, 2872 (2009).

    Article  CAS  Google Scholar 

  53. T. Pintauer and K. Matzjaszewski, Coord. Chem. Rev., 249, 1155 (2005).

    Article  CAS  Google Scholar 

  54. A. Livoreil, C. O. Dietrich-Buchecker, and J.-P. Sauvage, J. Am. Chem. Soc., 116, 9399 (1994).

    Article  CAS  Google Scholar 

  55. M. Pavelka and J. V. Burda, Chem. Phys., 312, 193 (2005).

    Article  CAS  Google Scholar 

  56. R. J. Fereday, Bull. Chem. Soc. Jpn., 45, 2927 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gomzi.

Additional information

Original Russian Text Copyright © 2011 by V. Gomzi

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 52, No. 5, pp. 906-6–916, September–October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomzi, V. Modeling of the bis(glycinato)copper(ii) cis-trans isomerization process: Theoretical analysis. J Struct Chem 52, 876–886 (2011). https://doi.org/10.1134/S0022476611050052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611050052

Keywords

Navigation