Skip to main content
Log in

Evolutionary aspects of sleep–wake cycle development in vertebrates (Modern state of the I.G. Karmanova’s sleep evolution theory)

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The genetic basis of rest–activity circadian alternation in animal behavior is considered in the evolutionary range from bacteria to mammals. We scrutinize various concepts of sleep development in the animal world evolution as well as the I.G. Karmanova’s theory of the sleep–wake cycle evolution in vertebrates, beginning from wakefulness–primary sleep (or protosleep) in fish and amphibians through wakefulness–intermediate sleep in reptiles to wakefulness–slow wave sleep (SWS) and paradoxical sleep (PS) in birds and mammals. Primary sleep is represented by the three major sleep-like immobility states: catalepsy, catatonia and cataplexy. The main behavioral, somatovegetative and neurophysiological characteristics of primary sleep and the ancient activation pattern during primary sleep are described. The issues of which of these sleep manifestations are homologous to SWS, PS, hibernation and stress response are discussed. In conclusion, the general diagram of sleep evolution in vertebrates is presented, and the I.G. Karmanova’s contribution to evolutionary somnology is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wejnar, R., Dvizheniya u rasteniy (Movements in Plants), Moscow, 1987.

    Google Scholar 

  2. Khlebosolov, E.I., Role of behavior in ecology and evolution of animals, Russ. Ornitol. Zh., 2005, iss. 277, vol. 14, pp. 49–55.

    Google Scholar 

  3. Dunlap, J.C., Molecular bases for circadian clocks, Cell, 1999, vol. 96, no. I.2, pp. 271–290.

    Article  CAS  PubMed  Google Scholar 

  4. Crosthwaite, S.C., Dunlap, J.C., and Loros, J.J., Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity, Science, 1997, vol. 276, pp. 763–769.

    Article  CAS  PubMed  Google Scholar 

  5. Howie, D.I., On the fine structure and distribution of secretory in the supraoesophageal ganglion of the lungworm (Arenicola marina L.), Gen. Comp. Endocrinol., 1977, vol. 31, pp. 350–363.

    Article  CAS  PubMed  Google Scholar 

  6. Siegel, J.M., Do all animals sleep? Trends Neurosci., 2008, vol. 31, pp. 208–213.

    Article  CAS  PubMed  Google Scholar 

  7. Mobler, I. and Stalder, J., Rest in scorpion—a sleep-like state, J.Comp. Physiol., 1988, vol. 163, pp. 227–235.

    Article  Google Scholar 

  8. Nitz, D.A., Swinderen van B., Tononi, G., and Greenspan, R.J., Electrophysiological correlates of rest and activity in Drosophila melanogaster, Curr. Biol., 2002, vol. 12, no. 22, pp. 1934–1940.

    Article  CAS  PubMed  Google Scholar 

  9. Kaplan, W.D. and Trout W.E., The behavior of four neurological mutants of drosophila, Genetics, 1969, vol. 61, pp.399–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jouvet, M., How sleep was dissociated into two stages: telencephalic and rombencephalic sleep? Arch. Ital. Biol., 2004, vol. 142, no. 4, pp. 317–326.

    PubMed  Google Scholar 

  11. Moruzzi, G., The sleep–waking cycle, Ergebn. Physiol., 1972, vol. 64, pp. 1–166.

    CAS  PubMed  Google Scholar 

  12. Wein, A.M. and Hecht, K., Son cheloveka: fiziologiya i patologiya (Human Sleep: Physiology and Pathology), Moscow, 1989.

    Google Scholar 

  13. Shepovalnikov, A.N., Aktivnost’ spayashchego mozga: elektropoligraficheskoe issledovanie fiziologicheskogo sna u detei (Activity of Sleeping Brain: Electropolygraphic Study of Physiological Sleep in Children), Leningrad, 1971.

    Google Scholar 

  14. Karmanova, I.G., Evolyutsiya sna: etapy formirovaniya tsikla “bodrstvovaniye–son” v ryadu pozvonochnikh (Evolution of Sleep: Stages of Sleep–Wake Cycle Development in Vertebrates), Leningrad, 1977.

    Google Scholar 

  15. Zeppelin, H. and Rechtschaffen, A., Mammalian sleep, longevity and energy metabolism, Brain Behav. Evol., 1974, vol. 10, no. 6, pp. 425–470.

    Article  Google Scholar 

  16. Allison, T. and Cicchetti, D.V., Sleep in mammals: ecological and constitutional correlates, Science, 1976, vol. 194, pp. 732–734.

    Article  CAS  PubMed  Google Scholar 

  17. Webb, W.B. and Agnew, H.W., Sleep stage characteristics of long and short sleepers, Science, 1970, vol. 168, no. 3927, pp.146–147.

    Article  CAS  PubMed  Google Scholar 

  18. Meddis, R., The evolution of sleep, Sleep Mechanisms and Functions in Human and Animal—an Evolutionary Perspective, Berkshire, England, 1983, pp. 57–106.

    Google Scholar 

  19. Cambel, S.S. and Tobler, I., Animal sleep. Review of sleep duration across phylogeny, Neurosci. Biobehav. Rev., 1984, vol. 8, no. 3, pp. 269–300.

    Article  Google Scholar 

  20. Mukhametov, L.M., Comparative physiology of mammals, Totals of Science and Technics (Physiology of Animals), 1986, vol. 31, VINITI, pp. 111–137.

    Google Scholar 

  21. Lesku, J.A., Roth, T.C., Amlaner, C.J., and Lima, S.L., A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology, Am. Nat., 2006, no. 168, pp. 441–453.

    Article  PubMed  Google Scholar 

  22. Oganesyan, G.A., Aristakesyan, E.A., Romanova, I.V., Vataev, S.I., Kuzik, V.V., and Kambarova, D.K., On the issue of evolution of sleep–wake cycle, Part 1, neurophysiological aspects, Biosfera, 2011, vol. 3, no. 4, pp. 514–530.

    Google Scholar 

  23. Lyamin, O.I., Manger, P.R., Ridgway, S.H., et al., Cetacean sleep: an unusual form of mammalian sleep, Neurosci. Biobehav. Rev., 2008, vol. 32, pp. 1451–1484.

    Article  PubMed  Google Scholar 

  24. Rattenborg, N.C., Amlaner, C.J., and Lima, S.L., Unilateral eye closure and interhemispheric EEG asymmetry during sleep in the pigeon (Columba livia), Brain Behav. Evol., 2001, vol. 58, no. 6, pp. 323–332.

    Article  CAS  PubMed  Google Scholar 

  25. Rattenborg, N.C. and Amlaner, C.J., Phylogeny of sleep, Sleep Medicine, Philadelphia, 2002, pp. 7–22.

    Google Scholar 

  26. Karmanova, I.G., New about features of sleep and sleep–wake cycle organization in poikilothermic animals, Zh. Evol. Biokhim. Fiziol., 1996, vol. 32, pp. 511–535.

    CAS  PubMed  Google Scholar 

  27. Karmanova, I.G., Protosleep in vertebrates and its role in genesis of hypobiosis and hibernation of mammals, Zh. Evol. Biokhim. Fiziol., 1984, vol. 20, pp. 49–52.

    CAS  PubMed  Google Scholar 

  28. Karmanova, I.G. and Oganesyan, G.A., Fiziologiya i patologiya tsikla bodrstvovanie–son: evolyutsionniye aspekty (Physiology and Pathology of Sleep–Wake Cycle: Evolutionary Aspects), Saint-Petersburg, 1994.

    Google Scholar 

  29. Karmanova, I.G., Belich, A.I., Pastukhov, Yu.F., and Chepkasov, I.E., Transformation of sleep cycle during immersion of the Arctic ground squirrel (Citellus parryi R.) to sleep (evolutionary aspect of the hibernation genesis problem), Zh. Evol. Biokhim. Fiziol., 1983, vol. 19, pp. 78–83.

    Google Scholar 

  30. Orbeli, L.A., Basic Tasks and Methods of Evolutionary Physiology (1958), L.A. Orbeli, Izbranniye trudy (L.A. Orbeli, Selected Works), Moscow–Leningrad, 1961, vol. 1, pp. 59–68.

    Google Scholar 

  31. Voino-Yasenetskiy, A.V., Otrazhenie evolyutsionnikh zakonomernostei v eksperimental’noi reaktsii zhivotnikh na deistvie vysokogo partsial’nogo davleniya kisloroda (Reflection of Evolutionary Regularities in Experimental Reaction of Animals to the Effect of Oxygen High Partial Pressure), Moscow–Leningrad, 1958.

    Google Scholar 

  32. Hobson, J.A., Sleep is of the brain, by the brain and for the brain, Nature, 2005, vol. 437, no. 7063, pp.1254–1256.

    Article  CAS  PubMed  Google Scholar 

  33. Vasilescu, E., Phylogenetic and general remarks on sleep, Rev. Roum. Morphol. Embriol. Physiol., 1983, vol. 20, pp. 17–25.

    CAS  Google Scholar 

  34. Walker, L.W. and Berger, R.J., A polygraphic study of the tortoise, Testudo denticulate, Brain Behav. Evol., 1973, vol. 8, pp. 453–467.

    Article  CAS  PubMed  Google Scholar 

  35. Rial, R.V., Nicolau, M.C., Gamundi, A., Akaarir, M., Tejada, S., Roca, C., Gene, L., Moranta, D., and Esteban, S., The trivial function of sleep, Sleep Med. Rev., 2007, vol. 11, no. 4, pp. 311–325.

    Article  PubMed  Google Scholar 

  36. Inoue, S., Behavioral versus telencephalic sleep, WFSRS Newsletter, 1995, vol. 4, pp. 11–12.

    Google Scholar 

  37. Rattenborg, N.C., Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis, Brain Res. Bull., 2006, vol. 69, pp. 20–29.

    Article  PubMed  Google Scholar 

  38. Allison, T., Van Twyver, H., and Goff, W.R., Electrophysiological studies of the echidna, Tachyglossus aculeatus. I. Waking and sleep, Archives Italiennes de Biologie, 1972, vol. 110, pp. 145–184.

    CAS  PubMed  Google Scholar 

  39. Siegel, J.M., Manger, P.R., Nienhuis, R., Fahringer, H.M., and Pettigrew, J.D., Monotremes and the evolution of rapid eye movement sleep, Phil. Trans. R. Soc. Lond. B. Biol. Sci., 1998, vol. 353, no. 1372, pp. 1147–1157.

    Article  CAS  Google Scholar 

  40. Nicol, S.C., Andersen, N.A., Phillips, N.H., and Berger, R.J., The echidna manifests typical characteristics of rapid eye movement sleep, Neurosci. Lett., 2000, vol. 283, no. 1, pp. 49–52.

    Article  CAS  PubMed  Google Scholar 

  41. Karmanova, I.G., Khomutetskaya, O.E., and Shilling, N.V., Comparative-physiological analysis of evolution of sleep and mechanisms of its regulation, Usp. Fiziol. Nauk, 1981, vol. 12, no. 2, pp. 3–20.

    CAS  PubMed  Google Scholar 

  42. Aristakesyan, E.A., Comparative neurophysiological analysis of sleep–wake cycle in early postnatal ontogenesis of rats and Guinea pigs, Zh. Evol. Biokhim. Fiziol., 1997, vol. 33, pp. 622–629.

    Google Scholar 

  43. Aristakesya, E.A. and Karmanova, I.G., Some examples of recapitulation of phylogenetic stages of sleep–wake cycle development in ontogenesis of mammals, Zh. Evol. Biokhim. Fiziol., 1998, vol. 34, pp. 492–501.

    Google Scholar 

  44. Aristakesyan, E.A. and Karmanova, I.G., Development of the activated sleep phase in phyloand ontogenesis, Zh. Evol. Biokhim. Fiziol., 1995, vol. 31, pp. 346–365.

    Google Scholar 

  45. Jouvet, M., Telencephalic and rhombencephalic sleep in the cat, The Nature of Sleep, London, 1961, pp.188–206.

    Google Scholar 

  46. Steriade, M., The corticothalamic system in sleep, Front Biosci., 2003, no. 8, pp. d878–d899.

    Article  CAS  PubMed  Google Scholar 

  47. Steriade, M. and McCarley, R.W., Brainstem Control of Wakefulness and Sleep, 2001, N.-Y., Plenum Press.

    Google Scholar 

  48. Karamyan, A.I., Evolyutsiya konechnogo mozga pozvonochnykh (Evolution of the Telencephalon), Leningrad, 1976.

    Google Scholar 

  49. Belekhova, M.G., Talamo-kortikal’naya sis tema reptiliy (afferentnaya organizatsiya, mezhtsent ral’nye vzaimootnosheniya i filogeneticheskaya inter pretatsiya) (Thalamo-Cortical System in Reptiles (Afferent Organization, Intercentral Relationship and Phylogenetic Interpretation)), Leningrad, 1977.

    Google Scholar 

  50. Karmanova, I.G., Aristakesyan, E.A., and Shilling, N.V., Neurophysiological analysis of hypothalamic mechanisms of protosleep and hypobiosis regulation, Dokl. Akad. Nauk SSSR, 1987, vol. 294, no. 1, pp. 245–248.

    CAS  PubMed  Google Scholar 

  51. Aristakesyan, E.A., Analysis of hypothalamic mechanisms of cold hypobiosis regulation in the frog Rana temporaria, Zh. Evol. Biokhim. Fiziol., 1992, vol. 28, pp. 38–44.

    Google Scholar 

  52. Karmanova, I.G. and Lazarev, S.G., New data on neurophysiology of sleep in fish and amphibians (on the genesis of slow-wave and paradoxical sleep phases in homeotherms), Dokl. Akad. Nauk SSSR, 1979, vol. 245, no. 3, pp. 757–760.

    Google Scholar 

  53. Aristakesyan, E.A., Neurophysiological characterization of rest forms of protosleep and hypobiosis in the frog Rana temporaria, Zh. Evol. Biokhim. Fiziol., 1986, vol. 22, pp. 475–481.

    Google Scholar 

  54. Aristakesyan, E.A., Evolutionary aspects of sleep–stress interaction: phylogenetic approach, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, pp. 598–611.

    Google Scholar 

  55. Aristakesya, E.A., Phylo-and ontogenetic parallels between the effects of sleep deprivation, Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 389–395.

    Google Scholar 

  56. Lazarev, S.G., Neurophysiological analysis of activations arising spontaneously in the frog Rana temporaria against the protosleep background, Zh. Evol. Biokhim. Fiziol., 1978, vol. 14, pp. 507–510.

    CAS  PubMed  Google Scholar 

  57. Aristakesyan, E.A. and Karmanova, I.G., Development of the activated sleep phase in phyloand ontogenesis, Zh. Evol. Biokhim. Fiziol., 1995, vol. 31, no. 3, pp. 346–365.

    Google Scholar 

  58. Pavlov, I.P. and Petrova, M.K., On the physiology of the hypnotic state of dog, I.P. Pavlov, Polnoe sobranie sochinenii (I.P. Pavlov, Complete Works), vol. 3, book 2, Moscow–Leningrad, 1951, pp. 133–147.

    Google Scholar 

  59. Karmanova, I.G., Fotogennaya katalepsiya (Photogenic Catalepsy), Moscow–Leningrad, 1964.

    Google Scholar 

  60. Aristakesyan, E.A., Comparative neurophysiological analysis of sleep–wake cycle in early postnatal ontogenesis in rats and Guinea pigs, Zh. Evol. Biokhim. Fiziol., 1997 vol. 33, pp.622–629.

    Google Scholar 

  61. Kolpakov, V.G., Catatoniya u zhivotnikh: genetika, neirofiziologiya, neirokhimiya (Catatonia in Animals: Genetics, Neurophysiology, Neurochemistry), 1991, Novosibirsk.

    Google Scholar 

  62. Oganesyan, G.A., Aristakesyan, E.A., Eliava, M.I., and Krasnovskaya, I.A., Morpho-functional analysis of the effect of short-term sleep deprivation on sleep–wake cycle in young and adult rats, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, pp. 232–239.

    Google Scholar 

  63. Raevskii, V.V., Formation of main neurotransmitter systems of the brain, Neiroontogenez (Neuroontogenesis), Moscow, 1985, pp. 199–243.

    Google Scholar 

  64. Polenov, A.L., Konstantinova, M.S., and Garlov, P.E., Hypothalamo-hypophyseal neuroendocrine complex, Osnovy sovremennoi fiziologii (neiroendokrinologiya) (Fundamentals of Modern Physiology (Neuroendocrinology)), Saint-Petersburg, 1993, pt. 1, book 1, pp. 139–187.

    Google Scholar 

  65. Karmanova, I.G., Aristakesyan, E.A., and Piskareva, T.V., Some issues of hypothermia in the light of evolutionary study of hibernation, Prolongirovannaya gipotermiya (Prolonged Hypothermia), Alma-Ata, 1987, pp. 8–22.

    Google Scholar 

  66. Khomutetskaya, O.E., Aristakesyan, E.A., and Sapozhkova, G.G., Effect of the extract isolated from small intestine of the hibernating Arctic ground squirrel Citellus undulates Pallas on rest forms of protosleep and hypobiosis in the grass frog, Evolyutsionniye aspekty gipobioza i zimnei spyachki (Evolutionary Aspects of Hypobiosis and Hibenation), Leningrad, 1986, pp. 100–104.

    Google Scholar 

  67. Karmanova, I.G., Kolaeva, S.G., Kramarova, L.I., Aristakesyan, E.A., Shilling, N.V., and Khomutetskaya, O.E., Effect of the intestinal extract of hibernating ground squirrel (Citellus undulates Pallas) on protosleep rest forms in vertebrates, Zh. Kriobiol. Kriomed. AN USSR, 1984, vol. 15, no. 1, pp. 36–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Aristakesyan.

Additional information

Original Russian Text © E.A. Aristakesyan, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 2, pp. 126—142.

To the 90th anniversary of Professor I.G. Karmanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristakesyan, E.A. Evolutionary aspects of sleep–wake cycle development in vertebrates (Modern state of the I.G. Karmanova’s sleep evolution theory). J Evol Biochem Phys 52, 141–160 (2016). https://doi.org/10.1134/S0022093016020058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016020058

Keywords

Navigation