Skip to main content
Log in

Suppression of superconductivity in YNi2B2C at the atomic disordering

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The behavior of the electrical resistivity ρ(T), the superconducting transition temperature T c , and the upper critical field H c2(T) of a polycrystalline sample of YNi2B2C irradiated by thermal neutrons with the subsequent high-temperature isochronous annealing in the temperature interval T ann = 100–1000°C has been studied. It has been found that the irradiation of YNi2B2C with a fluence of 1019cm−2 leads to the suppression of the superconductivity. The final disordered state is reversible; i.e., the initial ρ(T), T c , and H c2(T) values are almost completely recovered upon annealing at up to T ann = 1000°C. The quadratic dependence ρ(T) = ρ0 + a 2 T 2 is observed for the sample in the superconducting state (T c = 5.5−14.5 K). The coefficient a 2 (proportional to the square of the electron mass m*) hardly changes. The form of the dependence of T c on ρ0 can be interpreted as the suppression of the two superconducting gaps, Δ1 and Δ21 ∼ 2Δ2). The degradation rate of Δ1 is about three times higher than that of Δ2. The dependences dH c2/dT on ρ0 and T c may be described by the relations for a superconductor in the intermediate limit (the coherence length ζ0 is on the order of the electron mean free path l tr) under the assumption of a nearly constant electron density of states on the Fermi level N(E F). The observed behavior of T c obviously does not agree with the widespread opinion about the purely electron-phonon mechanism of superconductivity in the compounds of this type supposing the anomalous type of superconducting pairing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nagarajan, C. Mazumdar, Z. Hossain, et al., Phys. Rev. Lett. 72, 274 (1994).

    Article  ADS  Google Scholar 

  2. R. J. Cava, H. Takagi, H. W. Zandbergen, et al., Nature (London) 367, 252 (1994).

    Article  ADS  Google Scholar 

  3. R. Coehoorn, Physica C 228, 331 (1994).

    Article  ADS  Google Scholar 

  4. P. Ravindram, S. Sankaralingam, and R. Asokamani, Phys. Rev. B 52, 12921 (1995).

    Article  ADS  Google Scholar 

  5. L. F. Mattheiss, Phys. Rev. B 49, R13279 (1994).

    Article  ADS  Google Scholar 

  6. S. A. Carter, B. Batlogg, R. J. Cava, et al., Phys. Rev. B 50, R4216 (1994).

    Article  ADS  Google Scholar 

  7. H. Michor, T. Holubar, C. Dusek, and G. Hilscher, Phys. Rev. B 52, 16165 (1995).

    Article  ADS  Google Scholar 

  8. R. S. Gonnelli, A. Morello, G. A. Ummarino, et al., Int. J. Mod. Phys. B 14, 2840 (2000).

    Article  ADS  Google Scholar 

  9. C. L. Huang, J.-Y. Lin, C. P. Sun, et al., Phys. Rev. B 73, 012502 (2006).

    Article  ADS  Google Scholar 

  10. A. E. Karkin, V. E. Arkhipov, V. A. Marchenko, and B. N. Goshchitskii, Phys. Status Solidi A 54, k53 (1979).

    Article  ADS  Google Scholar 

  11. V. E. Arkhipov, V. I. Voronin, A. E. Kar’kin, and A. V. Mirmel’shtein, Fiz. Met. Metalloved. 55, 79 (1983).

    Google Scholar 

  12. A. E. Kar’kin, V. I. Voronin, T. V. D’yachkova, et al., JETP Lett. 73, 570 (2001).

    Article  ADS  Google Scholar 

  13. A. E. Kar’kin and B. N. Goshchitskii, Phys. Part. Nucl. 37, 807 (2006).

    Article  Google Scholar 

  14. S. L. Bud’ko, V. G. Kogan, H. Hodovanets, et al., Phys. Rev. B 82, 174513 (2010).

    Article  ADS  Google Scholar 

  15. K. O. Cheon, I. R. Fisher, V. G. Kogan, et al., Phys. Rev. B 58, 6463 (1998).

    Article  ADS  Google Scholar 

  16. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 12, 1243 (1961).

    Google Scholar 

  17. C. C. Hoellwarth, P. Klavins, and R. N. Shelton, Phys. Rev. B 53, 2579 (1996).

    Article  ADS  Google Scholar 

  18. K. Takaki, A. Koizumi, T. Hanaguri, et al., Phys. Rev. B 66, 184511 (2002).

    Article  ADS  Google Scholar 

  19. L. F. Mattheiss, Phys. Rev. B 49, 3702 (1994).

    Google Scholar 

  20. W. E. Pickett and D. J. Singh, Phys. Rev. Lett. 72, 3702 (1994).

    Article  ADS  Google Scholar 

  21. I. R. Fisher, J. R. Cooper, and P. C. Canfield, Phys. Rev. 56, 10820 (1997).

    Article  Google Scholar 

  22. K. D. D. Rathnayaka, A. K. Bhatnagar, A. Parasiris, et al., Phys. Rev. B 55, 8506 (1997).

    Article  ADS  Google Scholar 

  23. K. Kadowaki and S. B. Woods, Solid State Commun. 58, 507 (1986).

    Article  ADS  Google Scholar 

  24. E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).

    Article  ADS  Google Scholar 

  25. S. V. Shulga, S.-L. Drechsler, G. Fuchs, et al., Phys. Rev. Lett. 80, 1730 (1998).

    Article  ADS  Google Scholar 

  26. H. Schmidt and H. F. Braun, Phys. Rev. B 55, 8497 (1997).

    Article  ADS  Google Scholar 

  27. A. A. Golubov and I. I. Mazin, Phys. Rev. B 55, 15146 (1997); I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  28. A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B 78, 134512 (2008).

    Article  ADS  Google Scholar 

  29. C. Tarantini, M. Putti, A. Gurevich, et al., Phys. Rev. Lett. 104, 087002 (2010).

    Article  ADS  Google Scholar 

  30. Y. Nakajima, Y. Tsuchiya, T. Taen, et al., Physica C 471, 647 (2011).

    Article  ADS  Google Scholar 

  31. A. E. Karkin, M. R. Yangirov, Yu. N. Akshentsev, and B. N. Goshchitskii, Phys. Rev. B 84, 054541 (2011).

    Article  ADS  Google Scholar 

  32. Y. Wang, A. Kreisel, P. J. Hirschfeld, and V. Mishra, arXiv:cond-mat/1210.7474.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Karkin.

Additional information

Original Russian Text © A.E. Karkin, Yu.N. Akshentsev, B.N. Goshchitskii, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 6, pp. 392–397.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karkin, A.E., Akshentsev, Y.N. & Goshchitskii, B.N. Suppression of superconductivity in YNi2B2C at the atomic disordering. Jetp Lett. 97, 347–351 (2013). https://doi.org/10.1134/S0021364013060076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013060076

Keywords

Navigation