Skip to main content
Log in

Molecular dynamics and phenomenological simulations of an aluminum nanoparticle

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Molecular dynamics simulations of melting of aluminum nanoparticles are performed with the use of the DL POLY software package and embedded atom potential method for determining the thermal conductivity. Analytical approximations for the dependences of the thermal conductivity and specific heat on the temperature and particle size are reported. Based on the thermophysical parameters obtained in the study, the problem of nanoparticle melting is solved within the framework of the phenomenological approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Fedorov and A. V. Shulgin, “Mathematical Modeling of Melting of Nano-Sized Metal Particles,” Fiz. Goreniya Vzryva 47 2, 23–29 (2011) [Combust., Explos., Shock Waves 47 2, 147–152 (2011)].

    Google Scholar 

  2. A. V. Fedorov and A. V. Shulgin, “Complex Modeling of Melting of an Aluminum Nanoparticle,” Fiz. Goreniya Vzryva 49 4, 68–75 (2013) [Combust., Expl., Shock Waves 49 4, 442–449 (2013)].

    Google Scholar 

  3. A. V. Fedorov and A. V. Shulgin, “Molecular Dynamics Modeling of Melting of Aluminum Nanoparticles of the Embedded Atom Method,” Fiz. Goreniya Vzryva 51 3, 55–59 (2015) [Combust., Expl., Shock Waves 51 3, 333–337 (2015)].

    Google Scholar 

  4. W. Smith and I. T. Todorov, “A Short Description of DL POLY,” Mol. Simul. 32, 935–943 (2006).

    Article  Google Scholar 

  5. https://sitesgooglecom/site/eampotentials/Home.

  6. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquid (Clarendon, Oxford, 1997).

    MATH  Google Scholar 

  7. M. W. Finnis and J. E. Sinclair, “A Simple Empirical NBody Potential for Transition Metals,” Philos. Mag. A 50 1, 45–66 (1984).

    Article  ADS  Google Scholar 

  8. M. S. Green, “Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids,” J. Chem. Phys. 22, 398–413 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, 2004).

    Book  MATH  Google Scholar 

  11. A. J. H. McGaughey and M. Kaviany, “Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction,” Adv. Heat Transfer 39, 169–255 (2006).

    Article  Google Scholar 

  12. F. Taherkhani and H. Rezania, “Temperature and Size Dependency of Thermal Conductivity of Aluminum Nanocluster,” J. Nanopart. Res. 14, 1222 (2012).

    Article  Google Scholar 

  13. P. Puri and V. Yang, “Effect of Particle Size on Melting of Aluminum at Nano Scales,” J. Phys. Chem. C 111, 11776–11783 (2007).

    Article  Google Scholar 

  14. Modern Numerical Methods for Ordinary Differential Equations, Ed. by G. Hall and J. Watt (Oxford University Press, Oxford, 1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorov.

Additional information

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 3, pp. 45–50, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.V., Shulgin, A.V. Molecular dynamics and phenomenological simulations of an aluminum nanoparticle. Combust Explos Shock Waves 52, 294–299 (2016). https://doi.org/10.1134/S0010508216030060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216030060

Keywords

Navigation