Skip to main content
Log in

Energy of ligand-RNA complex formation

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This work presents an energetic analysis of complex formation of eleven ligands with different structure and charge with RNA aptamers. The most entire set of the components of the total Gibbs energy of complex formation has been first calculated using different physical factors: van der Waals, electrostatic and hydrophobic interactions, hydrogen bonds and specific factors being predominantly of entropic character. The calculated Gibbs energy is found to be in a good agreement with experimental data. Different energy components which stabilize and destabilize complexes are lined up according to the degree of importance. The results obtained provide an understanding of the role of different physical interactions in a ligand-RNA complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Foloppe, N. Matassova, and F. Aboul-Ela, Drug Discov. Today 11, 1019 (2006).

    Article  Google Scholar 

  2. A. Yonath, Annu. Rev. Biochem. 74, 649 (2005).

    Article  Google Scholar 

  3. R. P. Lange, H. H. Locher, P.C. Wyss, et al., Curr. Pharm. Des. 13, 3140 (2007).

    Article  Google Scholar 

  4. J. A. Ippolito, Z. F. Kanyo, D. Wang, et al., J. Med. Chem. 51, 3353 (2008).

    Article  Google Scholar 

  5. D. N. Wilson, F. Schluenzen, J. M. Harms, et al., Proc. Natl. Acad. Sci. USA 105, 13339 (2008).

    Article  ADS  Google Scholar 

  6. P. P. Amaral, M. E. Dinger, T. R. Mercer, et al., Science 319, 1787 (2008).

    Article  ADS  Google Scholar 

  7. F. Aboul-ela, Future Med. Chem. 2, 93 (2010).

    Article  Google Scholar 

  8. S. Kumari, A. Bugaut, J. L. Huppert, et al., Nat. Chem. Biol. 3, 218 (2007).

    Article  Google Scholar 

  9. R. J. Hagerman, S. M. Rivera, and P. J. Hagerman, Curr. Pediatr. Rev. 4, 40 (2008).

    Article  Google Scholar 

  10. A. D. Ellington and J. W. Szostak, Nature 346, 818 (1990).

    Article  ADS  Google Scholar 

  11. A. Villa, J. Wohnert, and G. Stock, Nucl. Acids Res. 37, 4774 (2009).

    Article  Google Scholar 

  12. S. Fulle, N. A. Christ, E. Kestner, et al., J. Chem. Inf. Model. 50, 1489 (2010).

    Article  Google Scholar 

  13. P. T. Lang, S. R. Brozell, S. Mukherjee, et al., RNA 15, 1219 (2009).

    Article  Google Scholar 

  14. T. Hermann and E. Westhof, J. Med. Chem. 42, 1250 (1999).

    Article  Google Scholar 

  15. C. Guilbert and T. L. James, J. Chem. Inf. Model. 48, 1257 (2008).

    Article  Google Scholar 

  16. P. Pfeffer and H. Gohlke, J. Chem. Inf. Model. 47, 1868 (2007).

    Article  Google Scholar 

  17. R. Nifosi, C. M. Reyes, and P. A. Kollman, Nucleic Acids Res. 28, 4944 (2000).

    Article  Google Scholar 

  18. C. M. Reyes, R. Nifosi, A. D. Frankel, et al., Biophys. J. 80, 2833 (2001).

    Article  Google Scholar 

  19. P. A. Kollman, I. Massova, C. Reyes, et al., Acc. Chem. Res. 33, 889 (2000).

    Article  Google Scholar 

  20. H. Gouda, I. D. Kuntz, D. A. Case, et al., Biopolymers 68, 16 (2003).

    Article  Google Scholar 

  21. C. M. Reyes and P. A. Kollman, J. Mol. Biol. 297, 1145 (2000).

    Article  Google Scholar 

  22. Y. Mu and G. Stock, Biophys. J. 90, 391 (2006).

    Article  ADS  Google Scholar 

  23. M. A. Olson, Biophys. J. 81, 1841 (2001).

    Article  ADS  Google Scholar 

  24. S. Qin and H.-X. Zhou, Biopolymers 86, 112 (2007).

    Article  Google Scholar 

  25. Y. Tanida, M. Ito, and H. Fujitani, Chem. Phys. 337, 135 (2007).

    Article  ADS  Google Scholar 

  26. C. Ma, N. A. Baker, S. Joseph, et al., J. Am. Chem. Soc. 124, 1438 (2002).

    Article  Google Scholar 

  27. M. A. Olson and L. Cuff, Biophys. J. 76, 28 (1999).

    Article  ADS  Google Scholar 

  28. W. H. Elliott and D. C. Elliott, Biochemistry and Molecular Biology (Oxford University Press, 1997).

  29. O. J. Armitage, Oncology 16, 490 (2002).

    Google Scholar 

  30. M. P. Mingeot-Leclercq, Y. Glupczynski, and P. M. Tulkens, Antimicrob. Agents Chemother. 43, 727 (1999).

    Google Scholar 

  31. S. Srivastava, R. Sinha, and D. Roy, Aquat. Toxicol. 66, 319 (2004).

    Article  Google Scholar 

  32. H. M. Berman, J. Westbrook, Z. Feng, et al., Nucl. Acids Res. 28, 235 (2000).

    Article  Google Scholar 

  33. W. D. Cornell, P. Cieplak, C. I. Bayly, et al., J. Am. Chem. Soc. 117, 5179 (1995).

    Article  Google Scholar 

  34. Gaussian 03 (Gaussian, Inc., Wallingford, 2004).

  35. B. H. Besler, K. M. Merz, and P. A. Kollman, J. Comput. Chem. 11, 431 (1990).

    Article  Google Scholar 

  36. W. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).

    Article  ADS  Google Scholar 

  37. A. T. Brunger, X-PLOR. A system for X-ray crystallography and NMR (Yale Univ. Press, 1992).

  38. S. Y. Reddy, F. Leclerc, and M. Karplus, Biophys. J. 84, 1421 (2003).

    Article  ADS  Google Scholar 

  39. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  40. J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).

    Article  ADS  Google Scholar 

  41. T. V. Chalikian, A. P. Sarvazyan, and K. J. Breslauer, Biophys. Chem. 51, 89 (1994).

    Article  Google Scholar 

  42. V. V. Kostjukov, N. M. Khomytova, and M. P. Evstigneev, Biopolymers 91, 773 (2009).

    Article  Google Scholar 

  43. V. V. Kostjukov, N. M. Khomytova, M. P. Evstigneev, et al., J. Chem. Thermodyn. 43, 1424 (2011).

    Article  Google Scholar 

  44. J. A. Cowan, T. Ohyama, D. Wang, et al., Nucl. Acids Res. 28, 2935 (2000).

    Article  Google Scholar 

  45. V. V. Kostjukov, N. M. Khomytova, M. P. Evstigneev, et al., Biopolymers 89, 680 (2008).

    Article  Google Scholar 

  46. K. A. Sharp and B. Honig, J. Chem. Phys. 94, 7684 (1990).

    Article  Google Scholar 

  47. M. Baginski, F. Fogolari, and J. M. Briggs, J. Mol. Biol. 274, 253 (1997).

    Article  Google Scholar 

  48. V. K. Misra and B. Honig, Proc. Natl. Acad. Sci. USA 92, 4691 (1995).

    Article  ADS  Google Scholar 

  49. A. V. Teplukhin, V. I. Poltev, and V. P. Chuprina, Biopolymers 31, 1445 (1991).

    Article  Google Scholar 

  50. F. Jiang, R. A. Kumar, R. A. Jones, et al. Nature 382, 183 (1996).

    Article  ADS  Google Scholar 

  51. Z. Du, K. E. Lind, and T. L. James, Chem. & Biol. 9, 707 (2002).

    Article  Google Scholar 

  52. A. S. Brodsky and J. R. Williamson, J. Mol. Biol. 267, 624 (1997).

    Article  Google Scholar 

  53. J. Nix, D. Sussman, and C. Wilson, J. Mol. Biol. 296, 1235 (2000).

    Article  Google Scholar 

  54. P. Fan, A. K. Suri, R. Fiala et al., J. Mol. Biol. 258, 480 (1996).

    Article  Google Scholar 

  55. S. Yoshizawa, D. Fourmy, and J. D. Puglisi, EMBO J. 17, 6437 (1998).

    Article  Google Scholar 

  56. J. Flinders, S. C. DeFina, D. M. Brackett, et al., Chem. Bio. Chem. 5, 62 (2004).

    Google Scholar 

  57. S. Zheng, S. Chen, C. P. Donahue, et al., Chem. & Biol. 16, 557 (2009).

    Article  Google Scholar 

  58. B. Davis, M. Afshar, G. Varani, et al., J. Mol. Biol. 336, 343 (2004).

    Article  Google Scholar 

  59. G. R. Zimmermann, R. D. Jenison, C. L. Wick, et al., Nat. Struct. & Mol. Biol. 4, 644 (1997).

    Article  Google Scholar 

  60. L. Jiang and D. J. Patel, Nat. Struct. Biol. 5, 769 (1998).

    Article  Google Scholar 

  61. J. Janin, Structure 5, 473 (1997).

    Article  Google Scholar 

  62. B. Lee and F. M. Richards, J. Mol. Biol. 55, 379 (1971).

    Article  Google Scholar 

  63. A. Maczek, Statistical Thermodynamics (Oxford Univ. Press, 1998).

  64. V. V. Kostyukov, N. M. Khomutova, and M. P. Evstigneev, Biofizika 54, 606 (2009).

    Google Scholar 

  65. V. V. Kostyukov, Biofizika 56, 35 (2011).

    Google Scholar 

  66. S. L. Mayo, B. D. Olafson, and W. A. Goddard, J. Phys. Chem. 94, 8897 (1990).

    Article  Google Scholar 

  67. J. Ma, Structure 13, 373 (2005).

    Article  Google Scholar 

  68. V. V. Kostjukov and M. P. Evstigneev, J. Mol. Liq. 163, 178 (2011).

    Article  Google Scholar 

  69. D. H. Nguyen, T. Dieckmann, M. E. Colvin, et al., J. Phys. Chem. B. 108, 1279 (2004).

    Article  Google Scholar 

  70. D. H. Nguyen, S. C. DeFina, W. H. Fink, et al., J. Am. Chem. Soc. 124, 15081 (2002).

    Article  Google Scholar 

  71. S. W. Lee, L. Zhao, A. Pardi, et al., Biochemistry 49, 2943 (2010).

    Article  Google Scholar 

  72. M. P. Latham, G. R. Zimmermann, and A. Pardi, J. Am. Chem. Soc. 131, 5052 (2009).

    Article  Google Scholar 

  73. C. Faber, H. Sticht, K. Schweimer, et al., J. Biol. Chem. 275, 20660 (2000).

    Article  Google Scholar 

  74. F. Pitici, D. L. Beveridge, and A.M. Baranger, Biopolymers 65, 424 (2002).

    Article  Google Scholar 

  75. G. I. Makhatadze and P. L. Privalov, Adv. Protein Chem. 47, 307 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Kostyukov, M.P. Evstigneev, 2012, published in Biofizika, 2012, Vol. 57, No. 4, pp. 598–613.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyukov, V.V., Evstigneev, M.P. Energy of ligand-RNA complex formation. BIOPHYSICS 57, 450–463 (2012). https://doi.org/10.1134/S0006350912040094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350912040094

Keywords

Navigation