Skip to main content

Advertisement

Log in

Herpesvirus quiescence in neuronal cells IV: Virus activation induced by pituitary adenylate cyclase-activating polypeptide (PACAP) involves the protein kinase A pathway

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring peptide found in the central nervous system that plays a role in somatosensory processing and activation of protein kinase A (PKA) and protein kinase C (PKC). Because activation of PKA or PKC results in reactivation of HSV-1 from latently infected embryonic neuronal cells, PACAP was used to evaluate HSV-1 activation from quiescently infected (QIF)-PC12 cells. Our studies demonstrate that physiologically relevant concentrations of PACAP38 and PACAP27 induce HSV-1 activation from QIF-PC12 cell cultures in a dose-dependent fashion. PACAP-induced activation of virus was significantly impaired by the PKA-inhibitor, H-89 (20 μM), whereas treatment with the PKC-inhibitor, GF109203X (1 μM), was without affect. Additionally, direct activation of PKA with cAMP analogs, 8-(4-chlorophenylthio)- and dibutyryl-cAMP, only partially mimicked the effect of PACAP on virus activation. Taken together, PACAP induced HSV-1 activation from QIF-PC12 cells involves the PKA and possibly cAMP-independent pathways. This report is the first to demonstrate that PACAP induces HSV-1 activation from a quiescent state and that this in vitro cell model is useful for studying early inductive events that lead to virus production from quiescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arimura A (1992). Pituitary adenylate cyclase-activating polypeptide (PACAP): discovery and current status of research Regul Pept 37: 287–303.

    CAS  PubMed  Google Scholar 

  • Brass KM, May V (1999). Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC1 receptor isoform activation of specific intracellular signaling pathways. J Biol Chem 274: 27702–27710.

    Article  Google Scholar 

  • Cai Y, Xin X, Shim G-J, Mokuno Y, Uehara H, Yamada T, Agui T, Matsumoto K (1997). Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) stimulate interleukin-6 production through the third subtype of PACAP/VIP receptor in rat bone marrow-derived stromal cells. Endocrinology 138: 2515–2520.

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro S, D’Agata V, Guardabasso V, Travali S, Stivala F, Canonico PL (1995). Differentiation induces pituitary adenylate cyclase-activating polypeptide receptor expression in PC-12 cells. Mol Pharmacol 48: 56–62.

    CAS  PubMed  Google Scholar 

  • Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T, Hidaka H (1990). Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 265: 5267–5272.

    CAS  PubMed  Google Scholar 

  • Danaher RJ, Jacob RJ, Chorak MD, Freeman CS, Miller CS (1999b). Heat stress induce reactivation of herpes simplex virus type 1 from quiescently infected neurally differentiated PC12 cells. J NeuroVirology 5: 374–383.

    Article  CAS  Google Scholar 

  • Danaher RJ, Jacob RJ, Miller CS (1999a). Establishment of a quiescent herpes simplex virus type 1 infection in neurally differentiated PC12 cells. J NeuroVirology 5: 258–267.

    Article  CAS  Google Scholar 

  • Danaher RJ, Jacob RJ, Miller CS (2000). Herpesvirus quiescence in neuronal cells: antiviral conditions not required to establish and maintain HSV-2 quiescence. J NeuroVirology 6: 296–302.

    Article  CAS  Google Scholar 

  • Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, Gomariz RP (1999). Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol 162: 1200–1205.

    CAS  PubMed  Google Scholar 

  • Deutsch PJ, Sun Y (1992). The 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. J Biol Chem 267: 5108–5113.

    CAS  PubMed  Google Scholar 

  • DiCicco-Bloom E, Deutsch PJ, Maltzman J, Zhang J, Pintar JE, Zheng J, Friedman WF, Zhou X, Zaremba T (2000). Autocrine expression and ontogenetic functions of the PACAP ligand/receptor system during sympathetic development. Dev Biol 219: 197–213.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson T, Fleetwood-Walker SM (1999). VIP and PACAP: very important in pain? Trends Pharmacol Sci 20: 324–329.

    Article  CAS  PubMed  Google Scholar 

  • Erhardt P, Troppmair J, Rapp UR, Cooper GM (1995). Differential regulation of Raf-1 and B-Raf and Ras-dependent activation of mitogen-activated protein kinase by cyclic AMP in PC12 cells. Mol Cell Biol 15: 5524–5530.

    CAS  PubMed  Google Scholar 

  • Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR (1993). Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 136: 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Halford WP, Gebhart BM, Carr DJ (1996). Mechanisms of herpes simplex virus type 1 reactivation. J Virol 70: 5051–5060.

    CAS  PubMed  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA (1998). International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50: 265–270.

    CAS  PubMed  Google Scholar 

  • Huang RD, Smith MF, Zahler WL (1982). Inhibition of forskolin-activated adenylate cyclase by ethanol and other solvents. J Cyclic Nucleotide Res 8: 385–394.

    CAS  PubMed  Google Scholar 

  • Jordan R, Pepe J, Schaffer PA (1998). Characterization of a nerve growth factor-inducible celluar activity that enhances herpes simplex virus type 1 gene expression and replication of an ICP0 null mutant in cells of neural lineage. J Virol 72: 5373–5382.

    CAS  PubMed  Google Scholar 

  • Lai CC, Wu SY, Lin HH, Dun NJ (1997). Excitatory action of pituitary adenylate cyclase activating polypeptide on rat sympathetic preganglionic neurons in vivo and in vitro. Brain Res 748: 189–194.

    Article  CAS  PubMed  Google Scholar 

  • Larsen JO, Hannibal J, Knudsen SM, Fahrenkrug J (1997). Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the mesencephalic trigeminal nucleus of the rat after transsection of the masseteric nerve. Brain Bes Mol Brain Res 46: 109–117.

    Article  CAS  Google Scholar 

  • Lazarovici P, Jiang H, Fink D Jr (1998). The 38-amino-acid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21(ras) G protein, and pp60(c-src) cytoplasmic tyrosine kinase. Mol Pharmacol 54: 547–558.

    CAS  PubMed  Google Scholar 

  • May V, Beaudet MM, Parsons RL, Hardwick JC, Gauthier EA, Durda JP, Braas KM (1998). Mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP)-induced depolarization of sympathetic superior cervical ganglion (SCG) neurons. Ann NY Acad Sci 865: 164–175.

    Article  CAS  PubMed  Google Scholar 

  • Miller CS, Danaher RJ, Jacob RJ (1998). Molecular aspects of herpes simplex virus I: latency, reactivation and recurrence. Crit Bev Oral Biol Med 9: 541–562.

    Article  CAS  Google Scholar 

  • Miller CS, Smith KO (1991). Enhanced replication of herpes simplex virus type 1 inhuman cells. J Dent Res 70: 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Millhouse S, Wigdahl B. (2000). Molecular circuitry regulating herpes simplex virus type 1 latency in neurons. J NeuroVirology 6: 6–24.

    Article  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989). Isolation of a novel 38 residue hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164: 567–574.

    Article  CAS  PubMed  Google Scholar 

  • Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A (1990). Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170: 643–648.

    Article  CAS  PubMed  Google Scholar 

  • Moller K, Reimer M, Ekblad E, Hannibal J, Fahrenkrug J, Kanje M, Sundler F (1997). The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating polypeptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res 775: 166–182.

    Article  CAS  PubMed  Google Scholar 

  • Moriya A, Yoshiki A, Kita M, Fushiki S, Imanishi J (1994). Heat shock-induced reactivation of herpes simplex virus type 1 in latently infected mouse trigeminal ganglion cells in dissociated culture. Arch Virol 135: 419–425.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Ueno S, Ikeuchi T, Hatanaka H (2000). Regulation of alpha3 nicotinic acetylcholine receptor subunit mRNA levels by nerve growth factor and cyclic AMP in PC12 cells. J Neurochem 74: 1346–1354.

    Article  CAS  PubMed  Google Scholar 

  • Pisegna JR, Wank SA (1993). Molecular cloning and functional expression of the pituitary adenylate cyclase-activatingpolypeptide type I receptor. Proc Natl Acad Sci USA 90: 6345–6349.

    Article  CAS  PubMed  Google Scholar 

  • Preston CM (2000). Repression of viral transcription during herpes simplex virus latency. J Gen Virol 81: 1–9.

    CAS  PubMed  Google Scholar 

  • Rydel RE, Greene LA (1988). CAMP-analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor. Proc Natl Acad Sci USA 85: 1257–1261.

    Article  CAS  PubMed  Google Scholar 

  • Sawtell NM, Thompson RL (1992). Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol 66: 2150–2156.

    CAS  PubMed  Google Scholar 

  • Seamon KB, Daly JW (1981). Activation of adenylate cyclase by the diterpene forskolin does not require the nucleotide regulatory protein. J Biol Chem 256: 9799–9801.

    CAS  PubMed  Google Scholar 

  • Smith RL, Pizer LI, Johnson EM Jr, Wilcox CL (1992). Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Virology 188: 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature 365: 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Tajti J, Uddman R, Möller S, Fundler F, Edvinsson L (1999). Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst 76: 176–183.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Koshimura K, Murakami Y, Sohmiya M, Yanaihara N, Kato Y (1997). Neuronal protection from apoptosis by pituitary adenylate cyclase-activating polypeptide. Regulatory Peptides 72: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Shibuya I, Nagamoto T, Yamashita H, Kanno T (1996). Pituitary adenylate cyclase-activating polypeptide causes rapid Ca2+ release from intracellular stores and long lasting Ca2+ influx mediated by Na+ influxdependent membrane depolarization in bovine adrenal chromaffin cells. Endocrinology 137: 956–966.

    Article  CAS  PubMed  Google Scholar 

  • Tatsuno I, Yada T, Vigh S, Hidaka H, Arimura A (1992). Pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide increase cytosolic free calcium concentration in cultured rat hippocampal neurons. Endocrinology 131: 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhame L, Charon D, Kirilovsky J (1991). The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266: 15771–15781.

    CAS  PubMed  Google Scholar 

  • Way KJ, Chou E, King GL (2000). Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 21: 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Xia K, Knipe DM, DeLuca NA (1996). Role of protein kinase A and the serine-richregion of herpes simplex virus type 1 ICP4 in viral replication. J Virol 70: 1050–1060.

    CAS  PubMed  Google Scholar 

  • Yada T, Sakurada M, Ihida K, Nakata M, Murata F, Arimura A, Kikuchi M (1994). Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intrapancreatic regulator of insulin secretion from islet beta-cells. J Biol Chem 269: 1290–1293.

    CAS  PubMed  Google Scholar 

  • Zhang Q, Shi T-J, Ji R-R, Sundler F, Hannibal J, Fahrenkrug J, Hokfelt T (1995). Expression of pituitary adenylate cyclase-activatingpolypeptide in dorsal root ganglia following axotomy: time course and coexistence. Brain Res 705: 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Danielsen N, Sundler F, Mulder H (1998). Pituitary adenylate cyclase-activating peptide is upregulated in sensory neurons by inflammation. Neuroreport 9: 2833–2836.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Miller.

Additional information

Fourth in the series. III was published as “Herpesvirus quiescence in neuronal cells: Antiviral conditions not required to establish and maintain HSV-2 quiescence” in Journal of NeuroVirology, volume 6, issue 4, pages 296–302.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danaher, R.J., Savells-Arb, A.D., Black, S.A. et al. Herpesvirus quiescence in neuronal cells IV: Virus activation induced by pituitary adenylate cyclase-activating polypeptide (PACAP) involves the protein kinase A pathway. Journal of NeuroVirology 7, 163–168 (2001). https://doi.org/10.1080/13550280152058825

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280152058825

Keywords

Navigation