Skip to main content
Log in

Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The present study aimed to evaluate the response to salinity of Populus euphratica, which is more salt-resistant than other poplar cultivars, at the cellular level. To this purpose, callus was induced from shoot segments of P. euphratica on Murashige and Skoog (MS) medium supplemented with 0.5 mg l−1 (2.2 μM) 6-benzyladenine (BA) and 0.5 mg l−1 (2.7 μM 1-naphthaleneacetic acid (NAA). Callus was transferred to MS medium supplemented with 0.25 mg l−1 (1.1 μM) BA and 0.5 mg l−1 NAA. The relative growth rate of callus reached a maximum in the presence of 50 mmol l−1 NaCl and growth was inhibited with increasing NaCl concentrations. Examination of the changes of osmotic substances under salt stress showed that accumulation of proline, glycine betaine, and total soluble sugars increased with increasing salt concentrations. The results indicate that the response of the callus of P. euphratica to salt stress is similar to that of the whole plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates, L. S.; Waldren, R. P.; Teare, D. Rapid determination of free proline for water stress studies. Plant Soil 39:205–207; 1973.

    Article  CAS  Google Scholar 

  • Bohnert, H. J.; Jensen, R. G. Metabolic engineering for increased salt tolerance, the next step. Aust. J. Plant Physiol. 23:661–666; 1996a.

    Google Scholar 

  • Bohnert, H. J.; Jensen, R. G. Strategies for engineering water stress tolerance in plants. Trends Biotechnol. 14:89–97; 1996b.

    Article  CAS  Google Scholar 

  • Boyer, J. S. Plant productivity and environment. Science 218:443–448; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28:350–356; 1956.

    Article  CAS  Google Scholar 

  • Escalada, J. A.; Moss, D. N. Changes in non-structural carbohydrate fractions of developing spring wheat kernels. Crop Sci. 16:627–631; 1976.

    Article  CAS  Google Scholar 

  • Flowers, T. J.; Hajibagueri, M. A.; Clipson, N. C. W. Halophytes. Quart. Rev. Biol. 61:313–337; 1986.

    Article  Google Scholar 

  • Flowers, T. J.; Troke, P. F.; Yeo, A. R. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28:89–121; 1977.

    Article  CAS  Google Scholar 

  • Fung, L. E.; Ma, H.; Wang, S. X-ray microanalysis of ion distribution in salt tolerancy and salt intolerant poplar genotypes. J. Beijing For. Univ. 5:23–30; 1996.

    Google Scholar 

  • Fung, L. E.; Wang, S.; Altman, A.; Hüttermann, A. Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. For. Ecol. Manage. 107:135–146; 1998.

    Article  Google Scholar 

  • Garham, J.; Hughes, L. Y.; Wynjanes, R. G. Low molecular weight carbohydrates in some salt stressed plants. Physiol. Plant. 53:27–33; 1981.

    Article  Google Scholar 

  • Giridara, K. S.; Madhusudhan, K. V.; Sreenivasulu, N.; Sudhakar, C. Stress responses in two genotypes of mulberry (Morus alba L.) under NaCl salinity. Indian J. Exp. Biol. 38:192–195; 2000.

    Google Scholar 

  • Greenway, H.; Munns, R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 31:149–190; 1980.

    CAS  Google Scholar 

  • Grieve, C. M.; Grattan, S. R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 70:303–307; 1983.

    Article  CAS  Google Scholar 

  • Gu, R.; Jiang, X.; Guo, Z. Organogenesis and plantlet regeneration in vitro of Populus euphratica. Acta Bot. Sin. 41:29–33; 1999.

    CAS  Google Scholar 

  • Hanson, A. D. Compatible solute synthesis and compartmentation in higher plants. In: Osmond, C. B.; Bjorkman, O.; Anderson, D. J., eds. Physiological processes in plant ecology: toward a synthesis with Atriplex. Berlin: Springer-Verlag; 1980:52–60.

    Google Scholar 

  • Hitz, W. D.; Hanson, A. D. Determination of glycine betaine by pyrolysis-gas chromatography in cereals and grasses. Phytochemistry 19:2371–2374; 1980.

    Article  CAS  Google Scholar 

  • Kavi Kishor, P. B.; Hong, Z.; Miao, G.-H.; Hu, C. A. A.; Verma, D. P. S. Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1387–1394; 1995.

    Google Scholar 

  • Kumar, S. G.; Reddy, A. M.; Sudhakar, C. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci. 165:1245–1251; 2003.

    Article  CAS  Google Scholar 

  • Ma, H.; Fung, L.; Wang, S.; Altman, A.; Hüttermann, A. Photosynthetic response of Populus euphratica to salt stress. For. Ecol. Manage. 93:55–61; 1997.

    Article  Google Scholar 

  • Macleod, A. M.; Orquodale, M. C. Water soluble carbohydrates of seeds of the gramineae. New Phytol. 57:168–182; 1958.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nuccio, M. L.; Rhodes, D.; McNeil, S. D.; Hanson, A. D. Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant Biol. 2:128–134; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Prado, F. E.; Boero, C.; Gallarodo, M.; Gonzalez, J. A. Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa wild seeds. Bot. Bull. Acad. Sin. 41:27–34; 2000.

    CAS  Google Scholar 

  • Prisco, J. T. Alguns aspectos da fisiologia do ‘stress’ salino. Revista Brasil. Bot. 3:85–94; 1980.

    Google Scholar 

  • Quick, P.; Siegl, G.; Neuhaus, E.; Feil, R.; Sttit, M. Short-term water stress leads to a stimulation of sucrose synthesis by activating sucrose phosphate synthase. Planta 177:535–546; 1989.

    Article  CAS  Google Scholar 

  • Rhodes, D.; Hanson, A. D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:357–384; 1993.

    Article  CAS  Google Scholar 

  • Rhodes, D. P.; Rich, J.; Myers, A. C.; Rueter, C. C.; Jamieson, G. C. Determination of betaines by fast atom bombardment mass spectrometry: identification of glycine betaine deficient genotypes of Zea mays. Plant Physiol 84:781–788; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.; Quebedeaux, B.; Stutte, G. W. Partitioning of (14C) glucose into sorbitol and other carbohydrates in apple under water stress. Aust. J. Plant Physiol. 23:245–251; 1996.

    Article  CAS  Google Scholar 

  • Wang, Z.; Stutte, G. W. The role of carbohydrates in active osmotic adjustment in apple under water stress. J. Am. Soc. Hort. Sci. 117:816–823; 1992.

    CAS  Google Scholar 

  • Watanabe, S.; Kojima, K.; Ide, Y.; Sasaki, S. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tiss. Organ Cult. 63:199–206; 2000.

    Article  CAS  Google Scholar 

  • Wei, Q. Euphratica poplar. Preface. Beijing: China Forestry Publishing; 1993: 1–195.

    Google Scholar 

  • Winter, K. Photosynthesis and water relationships of higher plants in a saline environment. In: Jefferies, R. L.; Davy, A. J., eds. Ecological processes in coastal environments. Oxford: Blackwell Science Publishers; 1979:297–320.

    Google Scholar 

  • Yokoi, S.; Bressan, R.A.; Hasegawa, P. M. The Japan International Research Center for Agricultural Sciences (JIRCAS) Working Report No. 23. In: Iwanaga, M., ed. Genetic engineering of crop plants for abiotic stress. Salt stress tolerance of plants. Tsukuba: Japan International Research Center for Agricultural Sciences Publishing; 2002:25–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Yang, Y.L., He, W.L. et al. Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica . In Vitro Cell.Dev.Biol.-Plant 40, 491–494 (2004). https://doi.org/10.1079/IVP2004546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004546

Key words

Navigation