Skip to main content

Advertisement

Log in

Modularity and the units of evolution

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

While many developmental processes (e. g., gene networks or signaling pathways) are astonishingly conserved during evolution, they may be employed differently in different metazoan taxa or may be used multiply in different contexts of development. This suggests that these processes belong to building blocks or modules, viz., highly integrated parts of the organism, which develop and/or function relatively independent from other parts. Such modules may be relatively easy to dissociate from other modules and, therefore, could also serve as units of evolution. However, in order to further explore the implications of modularity for evolution, the vague notion of “modularity” as well as its relation to concepts like “unit of evolution” need to be more precisely specified. Here, a module is characterized as a certain type of dynamic pattern of couplings among the constituents of a process. It may or may not form a spatially contiguous unit. A unit of selection is defined as a unit of those constituents of a reproducing process/system, which exists in different variants and acts as a non-decomposable unit of fitness and variant reproduction during a particular selection process. The more general notion of a unit of evolution is characterized as a nondecomposable unit of constituents with reciprocal fitness dependence, be it due to fitness epistasis or due to the lack of independent variability. Because such fitness dependence may only be observed for some combinations of variants, several constituents may act as a unit of evolution only with a certain probability (coevolution probability). It is argued, that under certain conditions modules are likely to act as units of evolution with high coevolution probabilities, because there is likely to be a close tie between the pattern of couplings of the constituents of a reproducing system and their interdependent fitness contributions. Moreover and contrary to the traditional dichotomy of genes versus organisms as units of selection, modules tend to be more important in delimiting actual units of selection than either organisms or genes, because they are less easily disrupted by recombination than organisms, while having less contextsensitive fitness values than genes. Finally, it is suggested that the evolution of modularity is self-reinforcing, because the flexibility of intermodular connections facilitates the recombination among modules and their multiple employment in new contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M., Prut, Y., Bergman H., Vaardia, E. (1994) Synchronization in neuronal transmission and its importance for information processing. Progress Brain Res. 102: 395–404.

    Article  CAS  Google Scholar 

  • Abouheif, E. (1997) Developmental genetics and homology: a hierarchical approach. Trend. Ecol. Evol. 12: 405–408.

    Google Scholar 

  • Alberch, P. (1980) Ontogenesis and morphological diversification. Am. Zool. 20: 653–667.

    Google Scholar 

  • Altenberg, L. (1995) Genome growth and the evolution of the genotype-phenotype map. In: Banzhaf, W., Eeckman, F. H. (eds) Evolution and biocomputation. Springer, Berlin, pp. 205–259.

    Google Scholar 

  • Ancel, L. W., Fontana, W. (2000) Plasticity, evolvability and modularity in RNA. J. Exp. Zool. (Mol.Dev.Evol.) 288: 242–283.

    CAS  Google Scholar 

  • Andrews, J. H. (1998) Bacteria as modular organisms. Annu. Rev. Microbiol. 52: 105–126.

    PubMed  CAS  Google Scholar 

  • Arnone, M. I., Davidson, E. H. (1997) The hardwiring of development: organization and function of genomic regulatory systems. Development 124: 1851–1864.

    PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas, S., Rand, M. D., Lake, R. J. (1999) Notch signaling: Cell fate control and signal integration in development. Science 284: 770–776.

    PubMed  CAS  Google Scholar 

  • Arthur, W. (1997) The origin of animal body plans. Cambridge University Press, Cambridge.

    Google Scholar 

  • Barton, N. H., Charlesworth, B. (1998) Why sex and recombination? Science 281: 1986–1990.

    PubMed  CAS  Google Scholar 

  • Beatus, P., Lendahl, U. (1998) Notch and neurogenesis. J. Neurosci. Res. 54: 125–136.

    PubMed  CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, F. A., Michod, R. E., Vemulapalli, G. K. (1983) The Darwinian dynamic. Quart. Rev. Biol. 58: 185–207.

    Google Scholar 

  • Bhalla, U. S., Iyengar, R. (1999) Emergent properties of networks of biological signaling pathways. Science 283: 381–387.

    PubMed  CAS  Google Scholar 

  • Boeke, J. D., Pickeral, O. K. (1999) Retroshuffling the genomic deck. Nature 398: 108–111.

    PubMed  CAS  Google Scholar 

  • Bolker, J. A., Raff, R. A. (1996) Developmental genetics and traditional homology. Bioessays 18: 489–494.

    PubMed  CAS  Google Scholar 

  • Bonner, J. T. (1988) The evolution of complexity. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Brandon, R. N. (1990) Adaptation and environment. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Brandon, R. N. (1999) The units of selection revisited: the modules of selection. Biology and Philosophy 14: 167–180.

    Google Scholar 

  • Bray, D. (1995) Protein molecules as computational elements in living cells. Nature 376: 307–312.

    PubMed  CAS  Google Scholar 

  • Bryant, E. H., McCommas, S. A., Combs, L. M. (1986) The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114: 1191–1211.

    PubMed  Google Scholar 

  • Burstein, Z. (1996). A network model of developmental gene hierarchy. J. Theor. Biol. 174: 1–11.

    Google Scholar 

  • Buss, L. W. (1987) The evolution of individuality. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Cheverud, J. M. (1984) Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110: 155–171.

    PubMed  CAS  Google Scholar 

  • Cheverud, J. M. (1996) Developmental integration and the evolution of pleiotropy. Am. Zool. 36: 44–50.

    Google Scholar 

  • Cheverud, J. M., Routman, E. J. (1995) Epistasis and its contribution to genetic variance components. Genetics 139: 1455–1461.

    PubMed  CAS  Google Scholar 

  • Cheverud, J. M., Vaughn, T. T., Pletscher, L. S., King-Ellison, K., Bailiff, J., Adams, E., Erickson, C., Bonislawski, A. (1999) Epistasis and the evolution of additive genetic variance in populations that pass through a bottleneck. Evolution 53: 1009–1018.

    Google Scholar 

  • Clarke, B. S., Mittenthal, J. E. (1992) Modularity and reliability in the organization of organisms. Bull. Math. Biol. 54: 1–20.

    Google Scholar 

  • Conrad, M. (1990) The geometry of evolution. Biosystems 24: 61–81.

    PubMed  CAS  Google Scholar 

  • Coveney, P., Highfield, R. (1995) Frontiers of complexity. Fawcett Columbina, New York.

    Google Scholar 

  • Coyne, J. A., Barton, N. H., Turelli, M. (1997) A critique of Sewall Wright’s shifting balance theory of evolution. Evolution 51: 643–671.

    Google Scholar 

  • Crow, J. F., Engels, W. R., Denniston, C. (1990) Phase three of Wright’s shifting balance theory. Evolution 44: 233–247.

    Google Scholar 

  • Darwin, C. (1859) On the origin of species. Murray, London.

    Google Scholar 

  • Davidson, E. H., Peterson, K. J., Cameron, R. A. (1995) Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science 270: 1319–1325.

    PubMed  CAS  Google Scholar 

  • Dawkins, R. (1976) The selfish gene. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Dawkins, R. (1978) Replicator selection and the extended phenotype. Zeitschr. Tierpsychol. 47: 61–76.

    CAS  Google Scholar 

  • Dawkins, R. (1982) The extended phenotype. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Dawkins, R. (1996) Climbing Mount Improbable. Norton, New York.

    Google Scholar 

  • Dickinson, W. J. (1995) Molecules and morphology: Where’s the homology. Trends Genet. 11: 119–121.

    PubMed  CAS  Google Scholar 

  • Doolittle, W. F. (1999) Lateral genomics. Trends Genet. 15: M 5-M 8.

    CAS  Google Scholar 

  • Doolittle, W. F., Sapienza, C. (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    PubMed  CAS  Google Scholar 

  • Dover, G. (2000) How genomic and developmental dynamics affect evolutionary processes. Bioessays 22: 1153–1159.

    PubMed  CAS  Google Scholar 

  • Duboule, D., Wilkins, A. S. (1998) The evolution of bricolage. Trends Genet. 14: 54–59.

    PubMed  CAS  Google Scholar 

  • Eickbush, T. (1999) Exon shuffling in retrospect. Science 283: 1465–1466.

    PubMed  CAS  Google Scholar 

  • Eigen, M., Gardiner, W., Schuster, P., Winkler-Oswatitsch, R. (1981) The origin of genetic information. Sci. Am. 244 (4): 88–118.

    PubMed  CAS  Google Scholar 

  • Eldredge, N. (1985) Unfinished synthesis. Oxford Univ. Press, New York.

    Google Scholar 

  • Falconer, D. S. (1960) Introduction to quantitative genetics. Oliver and Boyd, London.

    Google Scholar 

  • Fenster, C. B., Galloway, L. F., Chao, L. (1997) Epistasis and its consequences for the evolution of natural populations. Trends Ecol. Evolut. 12: 282–286.

    Google Scholar 

  • Fontana, W., Buss, L. (1994 a) “The arrival of the fittest”: toward a theory of biological organization. Bull. Math. Biol. 56: 1–64.

    Google Scholar 

  • Fontana, W., Buss, L. W. (1994 b) What would be conserved if “the tape were played twice”? Proc. Natl. Acad. Sci. USA 91: 757–761.

    PubMed  CAS  Google Scholar 

  • Fontana, W., Schuster, P. (1998) Continuity in evolution: On the nature of transitions. Science 280: 1451–1455.

    PubMed  CAS  Google Scholar 

  • Fontana, W., Wagner, G., Buss, L. W. (1995) Beyond digital naturalism. In: Langton, C. G. (ed) Artificial life. MIT Press, Cambridge.

    Google Scholar 

  • Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y.-L., Postlethwait, J. (1999) Preservation of duplicate genes by complementary degenerative mutations. Genetics 151: 1531–1545.

    PubMed  CAS  Google Scholar 

  • Forrest, S., Mitchell, M. (1993) Towards a stronger building-block hypothesis: effects of relative building-block fitness on GA performance. In: Whitley, L. D. (ed) Foundations of Genetic Algorithms. Morgon Kaufman, Palo Alto, pp. 109–126.

    Google Scholar 

  • Freeman, M. (2000) Feedback control of intercellular signalling in development. Nature 408: 313–319.

    PubMed  CAS  Google Scholar 

  • Futuyma, D. J. (1986) Evolutionary biology. Sinauer, Sunderland.

    Google Scholar 

  • García-Bellido, A. (1996) Symmetries throughout organic evolution. Proc. Natl. Acad. Sci. USA 93: 14229–14232.

    PubMed  Google Scholar 

  • Gellon, G., McGinnis, W. (1998) Shaping animal body plans in development and evolution by modulation of Hox expression patterns. Bioessays 20: 116–125.

    PubMed  CAS  Google Scholar 

  • Gerhart, J., Kirschner, J. (1997) Cells, embryos, and evolution. Blackwell Science, Malden.

    Google Scholar 

  • Gibson, G., Wagner, G. (2000) Canalization in evolutionary genetics: a stabilizing theory? Bioessays 22: 372–380.

    PubMed  CAS  Google Scholar 

  • Gilbert, S. F. (1998) Conceptual breakthroughs in developmental biology. J. Biosci. 23: 169–176.

    CAS  Google Scholar 

  • Gilbert, S. F. (2000) Developmental biology. Sinauer, Sunderland.

    Google Scholar 

  • Gilbert, S. F., Opitz, J. M., Raff, R. A. (1996) Resynthesizing evolutionary and developmental biology. Dev. Biol. 173: 357–372.

    PubMed  CAS  Google Scholar 

  • Gilbert, W. (1978) Why genes in pieces? Nature 271: 501.

    PubMed  CAS  Google Scholar 

  • Goldberg, D. E. (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading.

    Google Scholar 

  • Goodnight, C. J. (1988) Epistasis and the effect of founder events on the additive genetic variance. Evolution 42: 441–454.

    Google Scholar 

  • Goodnight, C. J. (1990 a) Experimental studies of community evolution. I. The response to selection at the community level. Evolution 44: 1614–1624.

    Google Scholar 

  • Goodnight, C. J. (1990 b) Experimental studies of community evolution. II. The ecological basis of the response to community selection. Evolution 44: 1614–1624.

    Google Scholar 

  • Goodnight, C. J., Schwartz, J. M., Stevens, L. (1992) Contextual analysis of group selection, soft selection, hard selection, and the evolution of altruism. Am. Nat. 140: 743–761.

    Google Scholar 

  • Gould, S. J. (1982) Darwinism and the expansion of the evolutionary theory. Science 216: 380–387.

    PubMed  CAS  Google Scholar 

  • Gould, S. J., Eldredge, N. (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3: 115–151.

    Google Scholar 

  • Gould, S. J., Eldredge, N. (1993) Punctuated equilibrium comes of age. Nature 366: 223–227.

    PubMed  CAS  Google Scholar 

  • Gould, S. J., Lewontin, R. C. (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205: 581–598.

    PubMed  CAS  Google Scholar 

  • Gould, S. J., Vrba, E. S. (1982) Exaptation — a missing term in the science of form. Paleobiology 8: 4–15.

    Google Scholar 

  • Gray, R. (1992) Death of the gene: developmental systems strike back. In: Griffiths, P. (ed) Trees of life. Kluwer, Dordrecht, pp. 165–209.

    Google Scholar 

  • Griffiths, P. E., Gray, R. D. (1994) Developmental systems and evolutionary explanation. J. Philos. 91: 277–304.

    Google Scholar 

  • Guillemot, F. (1999) Vertebrate bHLH genes and the determination of neuronal fates. Exp. Cell Res. 253: 357–364.

    PubMed  CAS  Google Scholar 

  • Hall, B. K. (1992) Evolutionary developmental biology. Chapman and Hall, London.

    Google Scholar 

  • Hammerschmidt, M., Brook, A., Mc Mahon, A. P. (1997) The world according to hedgehog. Trends Genet. 13: 14–21.

    PubMed  CAS  Google Scholar 

  • Harper, J. L., Rosen, B. R., White, J. (1986) The growth and form of modular organisms — Preface. Phil. Trans. R. Soc. Lond. B 313: 3–5.

    Google Scholar 

  • Hartwell, L. H., Hopfield, J. J., Leibler, S., Murray, A. W. (1999) From molecular to modular cell biology. Nature 402 Suppl.: C 47-C 52.

    CAS  Google Scholar 

  • Hedrick, P., Jan, S., Holden, L. (1978) Multilocus systems in evolution. Evol. Biol. 11: 101–184.

    Google Scholar 

  • Heisler, I. L., Damuth, J. D. (1987) A method for analyzing selection in hierarchically structured populations. Am. Nat. 130: 582–602.

    Google Scholar 

  • Hertz, J., Krogh, A., Palmer, R. G. (1991) Introduction to the theory of neural computation. Addison-Wesley, Redwood City.

    Google Scholar 

  • Holland, J. H. (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Hull, D. L. (1980) Individuality and selection. Annu. Rev. Ecol. Syst. 11: 311–332.

    Google Scholar 

  • Hull, D. L. (1981) Units of evolution: a metaphysical essay. In: Jensen, U. J., Harré, R. (eds) The philosophy of evolution. The Harvester press, Brighton, pp. 23–44.

    Google Scholar 

  • Hurst, L. D. (1999) The evolution of genomic anatomy. Trends Ecol. Evol. 14: 108–112.

    PubMed  Google Scholar 

  • Huynen, M. A., Stadler, P. F., Fontana, W. (1996) Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA 93: 397–401.

    PubMed  CAS  Google Scholar 

  • Jacob, F. (1977) Evolution and tinkering. Science 196: 1161–1166.

    PubMed  CAS  Google Scholar 

  • Katz, M. J. (1987) Is evolution random? In: Raff, R. A., Raff, E. C. (eds) Development as an evolutionary process. Liss, New York, pp. 285–315.

    Google Scholar 

  • Kauffman, S. A. (1993) The origins of order. Oxford Univ. Press, New York.

    Google Scholar 

  • Kauffman, S. A. (1995) At home in the universe. Oxford University Press, New York.

    Google Scholar 

  • Keys, D. N., Lewis, D. L., Selegue, J. E., Pearson, B. J., Goodrich, L. V., Johnson, R. L., Gates, J., Scott, M. P., Carroll, S. B. (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283: 532–534.

    PubMed  CAS  Google Scholar 

  • Kimble, J., Simpson, P. (1997) The lin-12/notch signaling pathway and its regulation. Annu. Rev. Cell Dev. Biol. 13: 333–361.

    PubMed  CAS  Google Scholar 

  • Kirchhamer, C. V., Yuh, C.-H., Davidson, E. H. (1996) Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples. Proc. Natl. Acad. Sci. USA 93: 9322–9328.

    PubMed  CAS  Google Scholar 

  • Kirschner, M., Gerhart, J. (1998) Evolvability. Proc. Natl. Acad. Sci. USA 95: 8420–8427.

    PubMed  CAS  Google Scholar 

  • Krakauer, D. C., Nowak, M. A. (1999) Evolutionary preservation of redundant duplicated genes. Semin. Cell Dev. Biol. 10: 555–559.

    PubMed  CAS  Google Scholar 

  • Lande, R., Arnold, S. J. (1983) The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Google Scholar 

  • Lewin, B. (2000) Genes VII. Oxford Univ. Press, New York.

    Google Scholar 

  • Lewontin, R. C. (1962) Interdeme selection controlling a polymorphism in the house mouse. Am. Nat. 96: 65–78.

    Google Scholar 

  • Lewontin, R. C. (1970) The units of selection. Annu. Rev. Ecol. Syst. 1: 1–18.

    Google Scholar 

  • Lewontin, R. C. (1974) The genetic basis of evolutionary change. Columbia Univ. Press, New York.

    Google Scholar 

  • Lewontin, R. C. (1978) Adaptation. Sci. Am. 239 (3): 156–169.

    Article  Google Scholar 

  • Lewontin, R. C. (1983) The organism as the subject and object of evolution. Scientia 118: 65–82.

    Google Scholar 

  • Lewontin, R. C., Kojima, K.-I. (1960) The evolutionary dynamics of complex polymorphisms. Evolution 14: 458–472.

    Google Scholar 

  • Lloyd, E. (1988) The structure and confirmation of evolutionary theory. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Maconochie, M., Nonchev, S., Morrison, A., Krumlauf, R. (1996) Paralogous hox genes: function and regulation. Annu. Rev. Genet. 30: 529–556.

    PubMed  CAS  Google Scholar 

  • Maturana, H. R., Varela, F. J. (1975) Autopoietic systems: A characterization of the living organization. Report 9.4 Biological Computer laboratory, University of Illinois, Urbana.

    Google Scholar 

  • Maynard Smith, J. (1987) How to model evolution. In: Dupré, J. (ed) The latest on the best. MIT Press, Cambridge, pp. 119–131.

    Google Scholar 

  • Maynard Smith, J. S. (1989) Evolutionary genetics. Oxford Univ. Press, New York.

    Google Scholar 

  • Maynard Smith, J. (1998) The units of selection. Novartis Foundation Symp. 213: 203–217.

    Article  CAS  Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., Wolpert, L. (1985) Developmental constraints and evolution. Quart. Rev. Biol. 60: 265–287.

    Google Scholar 

  • Maynard Smith, J., Szathmáry, E. (1995) The major transitions in evolution. Freeman, Oxford.

    Google Scholar 

  • Mayr, E. (1963) Animal species and evolution. Belknap Press, Cambridge.

    Google Scholar 

  • McAdams, H. H., Shapiro, L. (1995) Circuit simulation of genetic networks. Science 269: 650–656.

    PubMed  CAS  Google Scholar 

  • Mendoza, L., Thieffry, D., Alvarez-Buylla, E. R. (1999) Genetic control pf flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15: 593–606.

    PubMed  CAS  Google Scholar 

  • Mezey, J. G., Cheverud, J. M., Wagner, G. P. (2000). Is the genotype-phenotype map modular?: A statistical approach using mouse quantitative trait loci data. Genetics 156: 305–311.

    PubMed  CAS  Google Scholar 

  • Michod, R. E. (1997) Evolution of the individual. Amer. Nat. 150: S5-S21.

    Google Scholar 

  • Michod, R. E. (1999) Darwinian dynamics. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Mjolsness, E., Sharp, D. H., Reinitz, J. (1991) A Connectionist Model of Development. J. Theor. Biol 152: 429–453.

    PubMed  CAS  Google Scholar 

  • Niehrs, C., Pollet, N. (1999) Synexpression groups in eukaryotes. Nature 402: 483–487.

    PubMed  CAS  Google Scholar 

  • Nowak, M. A., Boerlijst, M. C., Cooke, J., Smith, J. M. (1997) Evolution of genetic redundancy. Nature 388: 167–171.

    PubMed  CAS  Google Scholar 

  • Ohno, S. (1970) Evolution by gene duplication. Springer, New York.

    Google Scholar 

  • Ohta, T. (1987) Simulating evolution by gene duplication. Genetics 115: 207–213.

    PubMed  CAS  Google Scholar 

  • Orgel, L. E., Crick, F. H. C. (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    PubMed  CAS  Google Scholar 

  • Oyama, S. (1985) The ontogeny of information. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Patel, N. H. (1994) Developmental evolution: Insights from studies of insect segmentation. Science 266: 581–590.

    PubMed  CAS  Google Scholar 

  • Patel, N. H., Ball, E. E., Goodman, C. S. (1992) Changing role of even-skipped during the evolution of insect pattern formation. Nature 357: 339–342.

    PubMed  CAS  Google Scholar 

  • Patthy, L. (1999) Genome evolution and the evolution of exon-shuffling — a review. Gene 238: 103–114.

    PubMed  CAS  Google Scholar 

  • Price, G. R. (1972) Extension of covariance selection mathematics. Ann. Human Genetics 35: 485–490.

    Article  CAS  Google Scholar 

  • Purugganan, M. D. (1998) The molecular evolution of development. Bioessays 20: 700–711.

    PubMed  CAS  Google Scholar 

  • Raff, R. A. (1996) The shape of life. Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Rechenberg, I. (1973) Evolutionsstrategie. Frommann-Holzboog, Stuttgart.

    Google Scholar 

  • Reggia, J. A., Armentrout, S. L., Chou, H.-H., Peng, Y. (1993) Simple systems that exhibit self-directed replication. Science 259: 1282–1287.

    PubMed  Google Scholar 

  • Reichardt, L. F., Fariñas, I. (1997) Neurotrophic factors and their receptors. In: Cowan, W. M., Jessell, T. M., Zipursky, S. L. (eds) Molecular and cellular approaches to neural development. Oxford Univ. Press, New York, pp. 220–263.

    Google Scholar 

  • Resnik, D. (1996) Developmental constraints and patterns: Some pertinent distinctions. J. Theor. Biol. 173: 231–240.

    Google Scholar 

  • Ridley, M. (1993) Evolution. Blackwell, Cambridge.

    Google Scholar 

  • Riedl, R. (1975) Die Ordnung des Lebendigen. Parey, Hamburg.

    Google Scholar 

  • Roth, G., Wake, D. B. (1989) Conservatism and innovation in the evolution of feeding in vertebrates. In: Wake, D. B., Roth, G. (eds) Complex organismal functions: Integration and evolution in vertebrates. Wiley, Chichester, pp. 7–21.

    Google Scholar 

  • Roth, L. (1991) Homology and hierarchies: problems solved and unresolved. J. Evol. Biol. 4: 167–194.

    Google Scholar 

  • Rutherford, S. L. (2000) From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays 22: 1095–1105.

    PubMed  CAS  Google Scholar 

  • Sasai, Y., De Robertis, E. M. (1997) Ectodermal patterning in vertebrate embryos. Dev. Biol. 182: 5–20.

    PubMed  CAS  Google Scholar 

  • Schank, J. C., Wimsatt, W. C. (1986) Generative entrenchment and evolution. PSA 1986 2: 33–60.

    Google Scholar 

  • Schank, J. C., Wimsatt, W. C. (2001) Evolvability: adaptation and modularity. In: Singh, R. S., Krimbas, C. B., Paul, D., Beatty, J. (eds) Thinking about evolution. Cambridge Univ. Press, Cambridge, pp 322–335.

    Google Scholar 

  • Schlosser, G. (1993) Einheit der Welt und Einheitswissenschaft. Grundlegung einer Allgemeinen Systemtheorie. Vieweg, Braunschweig.

    Google Scholar 

  • Schlosser, G. (1996) Der Organismus — eine Fiktion? In: Rheinberger, H. J., Weingarten, M. (eds) Jahrbuch für Geschichte und Theorie der Biologie III. Verlag für Wissenschaft und Bildung, Berlin, pp. 75–92.

    Google Scholar 

  • Schlosser, G. (1998) Self-re-production and functionality. A systems-theoretical approach to teleological explanation. Synthese 116: 303–354.

    Google Scholar 

  • Schlosser, G. (in press a) Modules — Developmental units as units of evolution? In: Schlosser,G., Wagner, G. P. (eds): Modularity in development and evolution. University of Chicago Press, Chicago.

  • Schlosser, G. (in press b) Amphibian variations — the role of modules in mosaic evolution. In: Rasskin-Gutman, D., Callebaut, W. (eds) Modularity: Understanding the development and evolution of complex natural systems. MIT Press, Cambridge.

  • Schlosser, G. (2001) Using heterochrony plots to detect the dissociated coevolution of characters. J. exp. Zool. (Mol. Dev. Evol.) 291: 282–304.

    CAS  Google Scholar 

  • Schlosser, G., Thieffry, D. (2000) Modularity in development and evolution. Bioessays 22: 1043–1045.

    PubMed  CAS  Google Scholar 

  • Schwenk, K. (1994) A utilitarian approach to evolutionary constraint. Zoology 98: 251–262.

    Google Scholar 

  • Sharp, D. H., Reinitz, J. (1998) Prediction of mutant expression patterns using gene circuits. Biosystems 47: 79–90.

    PubMed  CAS  Google Scholar 

  • Shimeld, S. M. (1999) Gene function, gene networks and the fate of duplicated genes. Semin. Cell Dev. Biol. 10: 549–553.

    PubMed  CAS  Google Scholar 

  • Shubin, N., Tabin, C., Carroll, S. (1997) Fossils, genes and the evolution of animal limbs. Nature 388: 639–648.

    PubMed  CAS  Google Scholar 

  • Sidow, A. (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr. Opin. Genet. Develop. 6: 715–722.

    CAS  Google Scholar 

  • Simon, H. A. (1962) The architecture of complexity. Proc. Am. Phil. Soc. 106: 467–482.

    Google Scholar 

  • Simpson, P. (1997) Notch signaling in development. Perspect. Dev. Neurobiol. 4: 297–304.

    PubMed  CAS  Google Scholar 

  • Smith, N. G. C., Knight, R., Hurst, L. D. (1999) Vertebrate genome evolution: a slow shuffle or a big bang? Bioessays 21: 697–703.

    PubMed  CAS  Google Scholar 

  • Sober, E. (1981) Holism, individualism and the units of selection. PSA 1981: 93–121.

    Google Scholar 

  • Sober, E. (1984) The nature of selection. Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Sober, E. (1987) Comments on Maynard Smith’s “How to model evolution”. In: Dupré, J. (ed) The latest on the best. MIT Press, Cambridge, pp. 133–149.

    Google Scholar 

  • Sober, E., Lewontin, R. C. (1982) Artifact, cause and genic selection. Philos. Science 49: 157–180.

    Google Scholar 

  • Sober, E., Wilson, D. S. (1994) A critical review of philosophical work on the unit of selection problem. Philos. Science 61: 534–555.

    Google Scholar 

  • Sober, E., Wilson, D. S. (1998) Unto others. Harvard Univ. Press, Cambridge.

    Google Scholar 

  • Somogyi, R., Sniegoski, C. A. (1996) Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1: 45–63.

    Google Scholar 

  • Štanojević, D., Hoey, T., Levine, M. (1989) Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila. Nature 341: 331–335.

    PubMed  Google Scholar 

  • Štanojević, D., Small, S., Levine, M. (1991) Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254: 1385–1387.

    PubMed  Google Scholar 

  • Sterelny, K., Kitcher, P. (1988) The return of the gene. J. Philos. 85: 339–361.

    Google Scholar 

  • Striedter, G. F., Northcutt, R. G. (1991) Biological hierarchies and the concept of homology. Brain Behav Evol 38: 177–189.

    PubMed  CAS  Google Scholar 

  • Stryer, L. (1981) Biochemistry. Freeman, San Francisco.

    Google Scholar 

  • Szathmáry, E. (1995) A classification of replicators and lambda-calculus models of biological organization. Proc. R. Soc. Lond. B 260: 279–286.

    Google Scholar 

  • Szathmáry, E., Maynard Smith, J. (1995) The major evolutionary transitions. Nature 374: 227–232.

    PubMed  Google Scholar 

  • Szathmáry, E., Maynard Smith, J. (1997) From replicators to reproducers: the first major transitions leading to life. J. Theor. Biol. 187: 555–571.

    PubMed  Google Scholar 

  • Thieffry, D., Huerta, A. M., Pérez-Rueda, E., Collado-Vides, J. (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20: 433–440.

    PubMed  CAS  Google Scholar 

  • Thieffry, D., Romero, D. (1999) The modularity of biological regulatory networks. Biosystems 50: 49–59.

    PubMed  CAS  Google Scholar 

  • Thieffry, D., Thomas, R. (1995) Dynamical behaviour of biological regulatory networks - II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57: 277–297.

    PubMed  CAS  Google Scholar 

  • Thomas, R. (1978) Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73: 631–656.

    PubMed  CAS  Google Scholar 

  • Thomas, R. (1991) Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153: 1–23.

    Google Scholar 

  • Thomas, R., Thieffry, D., Kaufman, M. (1995) Dynamical behaviour of biological regulatory networks - I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57: 247–276.

    PubMed  CAS  Google Scholar 

  • Tsai, M.-J., O’Malley, B. W. (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63: 451–486.

    PubMed  CAS  Google Scholar 

  • Uexküll, J. v. (1928) Theoretische Biologie. 2nd ed. Springer, Berlin.

    Google Scholar 

  • Varela, F., Maturana, H. R., Uribe, R. B. (1974) Autopoiesis: The organization of living systems, its characterization and a model. Biosystems 5: 187–196.

    CAS  Google Scholar 

  • Von Dassow, G., Munro, E. (1999) Modularity in animal development and evolution: Elements of a conceptual framework for EvoDevo. J. Exp. Zool. (Mol. Dev. Evol.) 285: 307–325.

    Google Scholar 

  • Von Dassow, G., Meir, E., Munro, E. M., Odell, G. M. (2000) The segment polarity network is a robust development module. Nature 406: 188–192.

    Google Scholar 

  • Waddington, C. H. (1957) The strategy of the genes. George Allen and Unwin, London.

    Google Scholar 

  • Wade, M. J. (1985) Soft selection, hard selection, kin selection, and group selection. Am. Nat. 125: 61–73.

    Google Scholar 

  • Wade, M. J. (1992) Epistasis. In: Fox Keller, E., Lloyd, E. A. (eds) Keywords in evolutionary biology. Harvard University Press, Cambridge, pp. 87–91.

    Google Scholar 

  • Wagner, A. (1998) The fate of duplicated genes: loss or new function? Bioessays 20: 785–788.

    PubMed  CAS  Google Scholar 

  • Wagner, G. P. (1981) Feedback selection and the evolution of modifiers. Acta Biotheor. 30: 79–102.

    PubMed  CAS  Google Scholar 

  • Wagner, G. P. (1995) The biological role of homologues: a building block hypothesis. N. Jb. Geol. Palont. Abh. 19: 36–43.

    Google Scholar 

  • Wagner, G. P. (1996) Homologues, natural kinds and the evolution of modularity. Am. Zool. 36: 36–43.

    Google Scholar 

  • Wagner, G. P., Altenberg, L. (1996) Complex adaptations and the evolution of evolvability. Evolution 50: 967–976.

    Google Scholar 

  • Wagner, G. P., Bürger, R. (1985) On the evolution of dominance modifiers. II. A non-equilibrium approach to the evolution of genetic systems. J. Theor. Biol. 113: 475–500.

    PubMed  CAS  Google Scholar 

  • Wagner, G. P., Booth, G., Bagheri-Chaichian, H. (1997) A population genetic theory of canalization. Evolution 51: 329–347.

    Google Scholar 

  • Wagner, G. P., Laubichler, M. D. (2000) Character identification in evolutionary biology: the role of the organism. Theory Biosci. 119: 20–40.

    Google Scholar 

  • Wagner, G. P., Laubichler, M. D., Bagheri-Chaichian, H. (1998) Genetic measurement theory of epistatic effects. Genetica 102/103: 569–580.

    Google Scholar 

  • Wagner, G. P., Mezey, A. (2000) Modeling the evolution of genetic architecture: A continuum of alleles model with pairwise A × A epistasis. J. Theor. Biol. 203: 163–175.

    PubMed  CAS  Google Scholar 

  • Wagner, G. P., Schwenk, K. (2000) Evolutionarily stable configurations: functional integration and the evolution of phenotype stability. Evol. Biol. 31: 155–217.

    Google Scholar 

  • Wake, D. B., Larson, A. (1997) Multidimensional analysis of an evolving lineage. Science 238: 42–48.

    Google Scholar 

  • Warren, R. W., Nagy, L., Selegue, J., Gates, J., Carroll, S. (1996) Evolution of homeotic gene regulation and function in flies and butterflies. Nature 372: 458–461.

    Google Scholar 

  • Waters, K. (1991) Tempered realism about the force of selection. Philos. Science 58: 553–573.

    Google Scholar 

  • Waxman, D., Peck, J. R. (1998) Pleiotropy and the preservation of perfection. Science 279: 1210–1213.

    CAS  Google Scholar 

  • Webster, G., Goodwin, B. (1996) Form and transformation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Weintraub, H. (1993) The MyoD family and myogenesis: Redundancy, networks and thresholds. Cell 75: 1241–1244.

    PubMed  CAS  Google Scholar 

  • Whitlock, M. C., Phillips, P. C., Moore, F. B.-G., Tonsor, S. J. (1995) Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26: 601–629.

    Google Scholar 

  • Whyte, L. L. (1965) Internal factors in evolution. Tavistock Publications, London.

    Google Scholar 

  • Wilkins, A. S. (1997) Canalization: a molecular genetic perspective. Bioessays 19: 257–262.

    PubMed  CAS  Google Scholar 

  • Wilkins, A. S. (1998) Evolutionary developmental biology: where is it going? Bioessays 20: 783–784.

    Google Scholar 

  • Williams, G. C. (1966) Adaptation and natural selection. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Wilson, D. S. (1983) The group selection controversy: history and current status. Annu. Rev. Ecol. Syst. 14: 159–187.

    Google Scholar 

  • Wimsatt, W. C. (1980) Reductionistic research strategies and their biases in the unit of selection controversy. In: Nickles, T. (ed) Scientific discovery: case studies. Reidel, Dordrecht, pp. 213–259.

    Google Scholar 

  • Wimsatt, W. C. (1981) Units of selection and the structure of the multilevel genome. PSA 1980 2: 122–183.

    Google Scholar 

  • Wimsatt, W. C. (1986) Developmental constraints, generative entrenchment, and the innate-acquired distinction. In: Bechtel, W. (ed). Integrating scientific disciplines. Nijhoff Publ. Dordrecht, pp. 185–208.

  • Wray, G. A. (1994) Developmental evolution - new paradigms and paradoxes. Dev. Genet. 15: 1–6.

    PubMed  CAS  Google Scholar 

  • Wright, S. (1931) Evolution in Mendelian populations. Genetics 16: 97–159.

    PubMed  CAS  Google Scholar 

  • Wright, S. (1988) Surface of selective value revisited. Am. Nat. 131: 115–123.

    Google Scholar 

  • Xu, X. L., Weinstein, M., Li, C. L., Deng, C. X. (1999) Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res. 296: 33–43.

    PubMed  CAS  Google Scholar 

  • Yen, P. M., Chin, W. W. (1994) New advances in understanding the molecular mechanisms of thyroid hormone action. Trends Endocrinol. Metab. 5: 65–72.

    CAS  PubMed  Google Scholar 

  • Yuh, C.-H., Bolouri, H., Davidson, E. H. (1998) Genomic cis-regulatory logic: axperimental and computaional analysis of a sea urchin gene. Science 279: 1896–1902.

    PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. (1994) Molecular pathways to parallel evolution. 1. Gene nexuses and their morphological correlates. J. Mol. Evol. 39: 661–678.

    PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. (1997) Neutral and nonneutral mutations: the creative mix - evolution of complexity in gene interaction systems. J. Mol. Evol. 44, Suppl. 1: S2-S8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Schlosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlosser, G. Modularity and the units of evolution. Theory Biosci. 121, 1–80 (2002). https://doi.org/10.1078/1431-7613-00049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1078/1431-7613-00049

Key words

Navigation