Skip to main content
Log in

Characterization of Phospholipid Mixed Micelles by Translational Diffusion

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The concentration dependence of the translational self diffusion rate, D s, has been measured for a range of micelle and mixed micelle systems. Use of bipolar gradient pulse pairs in the longitudinal eddy current delay experiment minimizes NOE attenuation and is found critical for optimizing sensitivity of the translational diffusion measurement of macromolecules and aggregates. For low volume fractions Φ (Φ ≤ 15% v/v) of the micelles, experimental measurement of the concentration dependence, combined with use of the D s=D o(1-3.2λΦ) relationship, yields the hydrodynamic volume. For proteins, the hydrodynamic volume, derived from D s at infinitely dilute concentration, is found to be about 2.6 times the unhydrated molecular volume. Using the data collected for hen egg white lysozyme as a reference, diffusion data for dihexanoyl phosphatidylcholine (DHPC) micelles indicate approximately 27 molecules per micelle, and a critical micelle concentration of 14 mM. Differences in translational diffusion rates for detergent and long chain phospholipids in mixed micelles are attributed to rapid exchange between free and micelle-bound detergent. This difference permits determination of the free detergent concentration, which, for a high detergent to long chain phospholipid molar ratio, is found to depend strongly on this ratio. The hydrodynamic volume of DHPC/POPC bicelles, loaded with an M2 channel peptide homolog, derived from translational diffusion, predicts a rotational correlation time that slightly exceeds the value obtained from peptide 15N relaxation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altieri, A.S., Hinton, D.P. and Byrd, R.A. (1995) J. Am. Chem. Soc., 117, 7566-7567.

    Google Scholar 

  • Burns, R.A., Roberts, M.F., Dluhy, R. and Mendelsohn, R. (1982) J. Am. Chem. Soc., 104, 430-438.

    Google Scholar 

  • Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry, Vol. Part 2, Freeman, San Francisco.

    Google Scholar 

  • Cavanagh, J., Fairbrother, W.J., Palmer, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego.

    Google Scholar 

  • Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T. and Bax, A. (2002) J. Am. Chem. Soc., 124, 2450-2451.

    PubMed  Google Scholar 

  • Fernandez, C., Hilty, C., Wider, G. and Wüthrich, K. (2002) Proc. Natl. Acad. Sci. U.S.A., 99, 13533-13537.

    PubMed  Google Scholar 

  • Gaemers, S. and Bax, A. (2001) J. Am. Chem. Soc., 123, 12343-12352.

    PubMed  Google Scholar 

  • Gibbs, S.J. and Johnson, C.S. (1991) J. Magn. Reson., 93, 395-402.

    Google Scholar 

  • Glover, K.J., Whiles, J.A., Wu, G.H., Yu, N.J., Deems, R., Struppe, J.O., Stark, R.E., Komives, E.A. and Vold, R.R. (2001) Biophys. J., 81, 2163-2171.

    PubMed  Google Scholar 

  • Holz, M. and Weingartner, H. (1991) J. Magn. Reson., 92, 115-125.

    Google Scholar 

  • Ilyina, E., Roongta, V., Pan, H., Woodward, C. and Mayo, K.H. (1997) Biochemistry, 36, 3383-3388.

    PubMed  Google Scholar 

  • Jerschow, A. and Muller, N. (1997) J. Magn. Reson., 125, 372-375.

    Google Scholar 

  • Johannesson, H. and Halle, B. (1996) J. Chem. Phys., 104, 6807-6817.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992a) J. Am. Chem. Soc., 114, 10663-10665.

    Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992b) J. Magn. Reson., 97, 359-375.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972-8979.

    PubMed  Google Scholar 

  • Knubovets, T., Osterhout, J.J., Connolly, P.J. and Klibanov, A.M. (1999) Proc. Natl. Acad. Sci. U.S.A., 96, 1262-1267.

    PubMed  Google Scholar 

  • Korzhnev, D.M., Skrynnikov, N.R., Millet, O., Torchia, D.A. and Kay, L.E. (2002) J. Am. Chem. Soc., 124, 10743-10753.

    PubMed  Google Scholar 

  • Kovacs, F.A., Denny, J.K., Song, Z., Quine, J.R. and Cross, T.A. (2000) J. Mol. Biol., 295, 117-125.

    PubMed  Google Scholar 

  • Krueger-Koplin, R.D., Sorgen, P.L., Krueger-Koplin, S.T., Rivera-Torres, I.O., Cahill, S.M., Hicks, D.B., Grinius, L., Krulwich, T.A. and Girvin, M.E. (2004) J. Biomol. NMR, 28, 43-57.

    PubMed  Google Scholar 

  • Lin, T.L., Chen, S.H., Gabriel, N.E. and Roberts, M.F. (1986) J. Am. Chem. Soc., 108, 3499-3507.

    Google Scholar 

  • Lin, T.L., Liu, C.C., Roberts, M.F. and Chen, S.H. (1991) J. Phys. Chem., 95, 6020-6027.

    Google Scholar 

  • Luchette, P.A., Vetman, T.N., Prosser, R.S., Hancock, R.E.W., Nieh, M.P., Glinka, C.J., Krueger, S. and Katsaras, J. (2001) Biochim. Biophys. Acta-Biomembr., 1513, 83-94.

    Google Scholar 

  • Mills, R. (1973) J. Phys. Chem., 77, 685-688.

    Google Scholar 

  • Nieh, M.P., Glinka, C.J., Krueger, S., Prosser, R.S. and Katsaras, J. (2001) Langmuir, 17, 2629-2638.

    Google Scholar 

  • Ottiger, M. and Bax, A. (1998) J. Biomol. NMR, 12, 361-372.

    PubMed  Google Scholar 

  • Price, W.S. (1997) Concept. Magn. Reson., 9, 299-336.

    Google Scholar 

  • Ramirez, B.E., Voloshin, O.N., Camerini-Otero, R.D. and Bax, A. (2000) Protein Sci., 9, 2161-2169.

    PubMed  Google Scholar 

  • Stafford, R.E., Fanni, T. and Dennis, E.A. (1989) Biochemistry, 28, 5113-5120.

    PubMed  Google Scholar 

  • Stejskal, E.O. and Tanner, J.E. (1965) J. Chem. Phys., 42, 288-292.

    Google Scholar 

  • Tanner, J.E. (1970) J. Chem. Phys., 52, 2523-2526.

    Google Scholar 

  • Tausk, R.J.M., van Esch, J., Karmiggelt, J., Voordouw, G. and Overbeek, J.T.G. (1974) Biophys. Chem., 1, 184-203.

    PubMed  Google Scholar 

  • Tian, C.L., Tobler, K., Lamb, R.A., Pinto, L.H. and Cross, T.A. (2002) Biochemistry, 41, 11294-11300.

    PubMed  Google Scholar 

  • Tokuyama, M. and Oppenheim, I. (1994) Phys. Rev. E, 50, R16-R19.

    Google Scholar 

  • Vold, R.R. and Prosser, R.S. (1996) J. Magn. Reson. Ser. B, 113, 267-271.

    Google Scholar 

  • Vold, R.R., Prosser, R.S. and Deese, A.J. (1997) J. Biomol. NMR, 9, 329-335.

    PubMed  Google Scholar 

  • Wider, G., Dotsch, V. and Wüthrich, K. (1994) J. Magn. Reson. Ser. A, 108, 255-258.

    Google Scholar 

  • Wu, D.H., Chen, A.D. and Johnson, C.S. (1995) J. Magn. Reson. Ser. A, 115, 260-264.

    Google Scholar 

  • Xia, Y. and Callaghan, P.T. (1991) Macromolecules, 24, 4777-4786.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, J.J., Baber, J.L. & Bax, A. Characterization of Phospholipid Mixed Micelles by Translational Diffusion. J Biomol NMR 29, 299–308 (2004). https://doi.org/10.1023/B:JNMR.0000032560.43738.6a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000032560.43738.6a

Navigation