Skip to main content
Log in

Estimation of Critical Point in Branching Reactions: Further Examination of Gel Point Formula

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The theory of gel point in real polymer solutions is examined with the empirical correlation between the reciprocal of the percolation threshold and the coordination number given by the percolation theory. Applying a larger value of the relative frequency of cyclization, an excellent agreement is obtained between the present theory and the percolation result. This suggest that while the ring distribution on lattices is similar to that in real systems, ring production is more frequent in the lattice model than in real systems. To confirm this conjecture, we derive the ring distribution function of the lattice model as a limiting case of d→∞, and show that the solution is in fact identical to the asymptotic formula of C→∞ in real systems except for the coefficient C, which has a maximum at d = 5, in support of the above conjecture. To examine the validity of the asymptotic solution for the lattice model, we apply it to the critical point problem of the percolation theory, showing that the solution works well in high dimensions greater than six.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. J. Flory, J. Am. Chem. Soc. 63:3091 (1941). (b) P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca and London, 1953).

    Google Scholar 

  2. S. R. Broadbent and J. M. Hammersley, Proc. Camb. Philos. Soc. 53:629 (1957). (b) H. L. Frisch and J. M. Hammersley, J. Soc. Indust. Appl. Math. 11:894 (1963).

    Google Scholar 

  3. P. G. de Gennes, J. Phys. (Paris) 37:L1 (1976).

    Google Scholar 

  4. D. J. Stauffer, J. Chem. Soc. Faraday Trans. II72:1354 (1976); Adv. Polymer Sci. 44:103 (1982).

    Google Scholar 

  5. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca and London, 1979).

    Google Scholar 

  6. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London and Philadelphia, 1985).

    Google Scholar 

  7. V. A. Vyssotsky, S. B. Gordon, H. L. Frisch, and J. M. Hammersley, Phys. Rev. 123:1566 (1961). (b) M. F. Sykes and J. W. Essam, Phys. Rev. 133:A310 (1964). (c) R. Zallen, The Physics of Amorphous Solid (Wiley, New York, 1983); Phys. Rev. B 16:1426 (1977). (d) V. K. S. Shante and S. Kirkpatrick, Adv. Phys. 20:325 (1971).

    Google Scholar 

  8. S. Galam and A. Mauger, Physica A 205:502 (1944); Phys. Rev. E 53:2177 (1996); Eur. Phys. J. B 1:255 (1998). (b) S. C. van der Marck, Phys. Rev. E 55:1228 (1997). (c) S. Galam and A. Mauger, Phys. Rev. E 55:1230 (1997).

    Google Scholar 

  9. K. Suematsu and T. Okamoto, J. Stat. Phys. 66:661 (1992). (b) K. Suematsu, T. Okamoto, M. Kohno, and Y. Kawazoe, J. Chem. Soc., Faraday Trans. 89:4181 (1993). (c) K. Suematsu and Y. Kawazoe, J. Chem. Soc. Faraday Trans. 92:2417 (1996).

    Google Scholar 

  10. J. L. Spouge, J. Stat. Phys. 43:143 (1986).

    Google Scholar 

  11. C. Domb, Adv. Chem. Phys. 15:229 (1969); C. Domb and M. S. Green & C. Domb and J. L. Lebowitz, Phase Transitions and Critical Phenomena (Academic Press, New York, 1972).

    Google Scholar 

  12. J. L. Martin, M. F. Sykes, and F. T. Hioe, J. Chem. Phys. 46:3478 (1967).

    Google Scholar 

  13. N. A. Dotson, C. W. Macosko, and M. Tirrell, Synthesis, Characterization and Theory of Polymeric Networks and Gels, A. Aharoni, ed. (Plenum Press, New York, 1992). (b) F. R. Jones, L. E. Scales, and J. A. Semlyen, Polymer 15:738 (1974); D. R. Cooper and J. A. Semlyen, Polymer 14:185 (1973). (c) J. Somvarsky and K. Dusek, Polym. Bull. 33:369, 377 (1994). (d) K. Dusek and M. Ilavsky, J. Polym. Sci.: Symposium 53:57, 75 (1975). (e) K. Dusek, Development in Polymerization, Vol. 3, R. N. Haward, ed. (Elsevier Applied Science Publishers Ltd., London, 1982), p. 143.

    Google Scholar 

  14. W. Burchard, Advances in Polymer Sciences 1 (1983).

  15. J. Hoshen, P. Klymko, and R. Kopelman, J. Stat. Phys. 21:583 (1979).

    Google Scholar 

  16. P. Agrawal, S. Redner, P. J. Reynolds, and H. E. Stanley, J. Phys. A: Math. Gen. 12:2073 (1979).

    Google Scholar 

  17. P. D. Gujrati, J. Chem. Phys. 98:1613 (1993); J. Chem. Phys. 107:22 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suematsu, K., Kohno, M. Estimation of Critical Point in Branching Reactions: Further Examination of Gel Point Formula. Journal of Statistical Physics 93, 293–305 (1998). https://doi.org/10.1023/B:JOSS.0000026735.03546.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000026735.03546.a8

Navigation