Skip to main content
Log in

Kinetic Limit of N-Body Description of Wave–Particle Self-Consistent Interaction

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A system of N particles \(\xi ^N = x_1 ,\upsilon_1,...,x_N ,\upsilon _N )\) interacting self-consistently with one wave Z = A exp(iφ) is considered. Given initial data (Z (N)(0), ξN(0)), it evolves according to Hamiltonian dynamics to (Z (N)(t), ξN(t)). In the limit N → ∞, this generates a Vlasov-like kinetic equation for the distribution function f(x, v, t), abbreviated as f(t), coupled to the envelope equation for Z: initial data (Z (∞)(0), f(0)) evolve to (Z (∞)(t), f(t)). The solution (Z, f) exists and is unique for any initial data with finite energy. Moreover, for any time T>0, given a sequence of initial data with N particles distributed so that the particle distribution f N(0) → f(0) weakly and with Z (N)(0) → Z(0) as N → ∞, the states generated by the Hamiltonian dynamics at all times 0 ≤ tT are such that (Z (N)(t), f N(t)) converges weakly to (Z (∞)(t), f(t)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. King, BBGKY hierarchy for positive potentials, Ph.D. thesis (University of California, Berkeley, 1975).

    Google Scholar 

  2. O. E. Lanford III, Time evolution of large classical systems, in Dynamical Systems, Theory and Applications, J. Moser, ed., Lect. Notes Phys., Vol. 38 (Springer, Berlin, 1975), pp. 1–111.

    Google Scholar 

  3. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer, New York, 1994).

    Google Scholar 

  4. J. Piasecki, Echelles de temps en théorie cinétique (Presses universitaires romandes, Lausanne, 1997).

    Google Scholar 

  5. H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, in Kinetic Theories and the Boltzmann Equation, C. Cercignani, ed., Lect. Notes Math., Vol. 1048 (Springer, Berlin, 1984), pp. 60–110.

    Google Scholar 

  6. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991).

    Google Scholar 

  7. M. Antoni, Dynamique microscopique des plasmas: de “N corps” à “M modes et N q particules,” Thèse de doctorat de l'université de Provence (Marseille, 1993).

    Google Scholar 

  8. M. Antoni, Y. Elskens, and D. F. Escande, Reduction of N-body dynamics to particle-wave interaction in plasmas, in Dynamics of Transport in Plasmas and for Charged Beams, G. Maino and M. Ottaviani, eds. (World Scientific, Singapore, 1996), pp. 1–17.

    Google Scholar 

  9. M. Antoni, Y. Elskens, and D. F. Escande, Explicit reduction of N-body dynamics to self-consistent particle-wave interaction, Phys. Plasmas 5:841–852 (1998).

    Google Scholar 

  10. J. R. Cary, I. Doxas, D. F. Escande, and A. D. Verga, Enhancement of the velocity diffusion in longitudinal plasma turbulence, Phys. Fluids B 4:2062–2069 (1992).

    Google Scholar 

  11. I. Doxas and J. R. Cary, Numerical observation of turbulence enhanced growth rates, Phys. Plasmas 4:2508–2518 (1997).

    Google Scholar 

  12. D. F. Escande, Description of Landau damping and weak Langmuir turbulence through microscopic dynamics, in Nonlinear World, V. G. Bar'yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, and V. E. Zakharov, eds. (World Scientific, Singapore, 1990), pp. 817–836.

    Google Scholar 

  13. D. F. Escande, Large scale structures in kinetic plasma turbulence, in Large Scale Structures in Nonlinear Physics, J. D. Fournier and P. L. Sulem, eds., Lect. Notes Phys., Vol. 392 (Springer, Berlin, 1991), pp. 73–104.

    Google Scholar 

  14. D. Guyomarc'h, F. Doveil, Y. Elskens, and D. Fanelli, Warm beam-plasma instability beyond saturation, in Transport, Chaos and Plasma Physics 2, S. Benkadda, F. Doveil, and Y. Elskens, eds. (World Scientific, Singapore, 1996), pp. 406–410.

    Google Scholar 

  15. H. E. Mynick and A. N. Kaufman, Soluble theory of nonlinear beam-plasma interaction, Phys. Fluids 21:653–663 (1978).

    Google Scholar 

  16. T. M. O'Neil, J. H. Winfrey, and J. H. Malmberg, Nonlinear interaction of a small cold beam and a plasma, Phys. Fluids 14:1204–1212 (1971).

    Google Scholar 

  17. T. M. O'Neil and J. H. Winfrey, Nonlinear interaction of a small cold beam and a plasma, II, Phys. Fluids 15:1514–1522 (1972).

    Google Scholar 

  18. J. L. Tennyson, J. D. Meiss, and P. J. Morrison, Self-consistent chaos in the beam-plasma instability, Physica D 71:1–17 (1994).

    Google Scholar 

  19. S. Zekri, Approche hamiltonienne de la turbulence faible de Langmuir, Thèse de doctorat de l'université de Provence (Marseille, 1993).

    Google Scholar 

  20. D. F. Escande, S. Zekri, and Y. Elskens, Intuitive and rigorous derivation of spontaneous emission and Landau damping of Langmuir waves through classical mechanics, Phys. Plasmas 3:3534–3539 (1996).

    Google Scholar 

  21. P. Bertrand, A. Ghizzo, S. J. Karttunen, T. J. H. Pättikangas, R. R. E. Salomaa, and M. Shoucri, Two-stage acceleration by simultaneous stimulated Raman backward and forward scattering, Phys. Plasmas 2:3115–3129 (1995).

    Google Scholar 

  22. A. Ghizzo, M. Shoucri, P. Bertrand, T. Johnston, and J. Lebas, Trajectories of trapped particles in the field of a plasma wave excited by a stimulated Raman scattering, J. Comput. Phys. 108:373–376 (1993).

    Google Scholar 

  23. P. Chaix and D. Iracane, Stochastic electronic motion and high efficiency free electron lasers, in Transport, Chaos and Plasma Physics, S. Benkadda, F. Doveil, and Y. Elskens, eds. (World Scientific, Singapore, 1994), pp. 370–373.

    Google Scholar 

  24. D. A. Hartmann, C. F. Driscoll, T. M. O'Neill, and V. D. Shapiro, Measurements of the weak warm beam instability, Phys. Plasmas 2:654–677 (1995).

    Google Scholar 

  25. G. Brodin, Nonlinear Landau damping, Phys. Rev. Lett. 78:1263–1266 (1997).

    Google Scholar 

  26. M. B. Isichenko, Nonlinear Landau damping in collisionless plasma and inviscid fluid, Phys. Rev. Lett. 78:2369–2372 (1997).

    Google Scholar 

  27. G. Manfredi, Long-time behavior of nonlinear Landau damping, Phys. Rev. Lett. 79:2815–2818 (1997).

    Google Scholar 

  28. G. J. Morales, Interaction of a low density runaway beam with cavity modes, Phys. Fluids 22:1359–1371 (1979).

    Google Scholar 

  29. G. J. Morales, Effect of a dc field on the trapping dynamics of a cold electron beam, Phys. Fluids 23:2472–2484 (1980).

    Google Scholar 

  30. H. L. Berk, B. N. Breizman, and M. Pekker, Numerical simulation of bump-on-tail instability with source and sink, Phys. Plasmas 2:3007–3016 (1995).

    Google Scholar 

  31. D. Fanelli, Regime non lineare dell'instabilità fascio di elettroni/plasma (interazione onde/particelle), tesi di laurea, università studi di Fírenze (1996).

  32. B. D. Fried, C. S. Liu, R. W. Means, and R. Z. Sagdeev, Nonlinear evolution of an unstable electrostatic wave, Ccalifornia, Los Angeles, plasma physics group, report PPG-93 (1971).

    Google Scholar 

  33. Y. Elskens and M. C. Firpo, Kinetic theory and large-N limit for wave-particle self-consistent interaction, Physica Scripta, in press.

  34. J. R. Cary and I. Doxas, An explicit symplectic integration scheme for plasma simulation, J. Comput. Phys. 107:98–104 (1993).

    Google Scholar 

  35. D. Guyomarc'h, Un tube à onde progressive pour l'étude de la turbulence plasma, Thèse de doctorat de l'université de Provence (Marseille, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firpo, MC., Elskens, Y. Kinetic Limit of N-Body Description of Wave–Particle Self-Consistent Interaction. Journal of Statistical Physics 93, 193–209 (1998). https://doi.org/10.1023/B:JOSS.0000026732.51044.87

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000026732.51044.87

Navigation