Skip to main content
Log in

Least-Squares Spectral Collocation for the Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A least-squares spectral collocation formulation for the Navier–Stokes problem is presented. By this new approach the well known Babušska–Brezzi condition can be avoided. Here we are able to employ polynomials of the same degree both for the velocity components and for the pressure. The collocation conditions and the boundary conditions lead to a overdetermined system which can be efficiently solved by least-squares. The solution technique will only involve symmetric positive definite linear systems. The numerical simulations confirm the usual exponential rate of convergence for the spectral scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bernardi, C., Canuto, C., and Maday, Y. (1986). Generalized inf–sup condition for Chebyshev approximations to Navier–Stokes equations. C.R. Acad. Sci. Paris 303(2), 971–974.

    Google Scholar 

  2. Bernardi, C., and Maday, Y. (1992). fr Approximations spectrale de problèmes aux limites elliptiques, Springer-Verlag.

  3. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1989). Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, Berlin/ Heidelberg/New York.

    Google Scholar 

  4. Chang, C. L., and Gunzburger, M. D. (1990). A subdomain collocation/least squares method for linear elliptic systems in the plane. SIAM Numer. Anal. 27(5), 1197–1221.

    Google Scholar 

  5. Chang, C. L., and Yang, S. Y. (2002). Analysis of the L-2 least-squares finite element method for the velocity-vorticity-pressure Stokes equations with velocity boundary conditions. Appl. Math. Comp. 130, 121–144.

    Google Scholar 

  6. Deang, J. M., and Gunzburger, M. D. (1998). Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput. 20, 878–906.

    Google Scholar 

  7. Eisen, H., and Heinrichs, W. (1992). A new method of stabilization for singular perturbation problems with spectral methods. SIAM J. Numer. Anal. 29, 107–122.

    Google Scholar 

  8. Gerritsma, M. I., and Phillips, T. N. (1998). Discontinuous spectral element approximation for the velocity-pressure-stress formulation of the Stokes problem. Internat. J. Numer. Methods Engrg. 43, 1401–1419.

    Google Scholar 

  9. Gottlieb, D., and Orszag, S. A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics No. 26, SIAM, Philadelphia.

    Google Scholar 

  10. Haschke, H., and Heinrichs, W. (2001). Splitting techniques with staggered grids for the Navier–Stokes equations in the 2D case. J. Comput. Phys. 168, 131–154.

    Google Scholar 

  11. Heinrichs, W. (1993). Splitting techniques for the pseudospectral approximation of the unsteady Stokes equations. SIAM J. Numer. Anal. 30(1), 19–39.

    Google Scholar 

  12. Heinrichs, W., and Loch, B. (2001). Spectral schemes on triangular elements. J. Comput. Phys. 173, 279–301.

    Google Scholar 

  13. Heinrichs, W. (2003). Least-squares for the spectral approximation of discontinuous and singular perturbation problems.To appear in J. Comput. Appl. Math.

  14. Jiang, B.-N. (1992). A least-squares finite element method for incompressible Navier– Stokes problems. Internat. J. Numer. Methods Fluids 14, 843–859.

    Google Scholar 

  15. Jiang, B.-N. (1998). On the least-squares method. Comput. Methods Appl. Mech. Engrg. 152, 239–257.

    Google Scholar 

  16. Jiang, B.-N., and Chang, C. L. (1990). Least-squares finite elements for the Stokes problem. Comput. Methods Appl. Mech. Engrg. 78, 297–311.

    Google Scholar 

  17. Jiang, B.-N., and Povinelli, L. (1990). Least-squares finite element method for fluid dynamics. Comput. Methods Appl. Mech. Engrg. 81, 13–37.

    Google Scholar 

  18. Orszag, S. A. (1980). Spectral methods for problems in complex geometries. J. Comp. Phys. 37, 70–92.

    Google Scholar 

  19. Proot, M. J., and Gerritsma, M. I. (2002). A least-squares spectral element formulation for the Stokes problem. J. Scient. Computing 17, 285–296.

    Google Scholar 

  20. Rønquist, E. (1988). Optimal Spectral Element Methods for the Unsteady Three Dimensional Incompressible Navier–Stokes Equations, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrichs, W. Least-Squares Spectral Collocation for the Navier–Stokes Equations. Journal of Scientific Computing 21, 81–90 (2004). https://doi.org/10.1023/B:JOMP.0000027956.13510.5a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMP.0000027956.13510.5a

Navigation