Skip to main content
Log in

Time Explicit Schemes and Spatial Finite Differences Splittings

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we conjugate time marching schemes with Finite Differences splittings into low and high modes in order to build fully explicit methods with enhanced temporal stability for the numerical solutions of PDEs. The main idea is to apply explicit schemes with less restrictive stability conditions to the linear term of the high modes equation, in order that the allowed time step for the temporal integration is only determined by the low modes. These conjugated schemes were developed in [10] for the spectral case and here we adapt them to the Finite Differences splittings provided by Incremental Unknowns, which steems from the Inertial Manifolds theory. We illustrate their improved capabilities with numerical solutions of Burgers equations, with uniform and nonuniform meshes, in dimensions one and two, when using modified Forward–Euler and Adams–Bashforth schemes. The resulting schemes use time steps of the same order of those used by semi-implicit schemes with comparable accuracy and reduced computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ascher, U., and Petzold, L. (1998). Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM.

  2. Calgaro, C., Laminie, J., and Temam, R. (1997). Dynamical multilevel schemes for the solution of evolution equations by hierarchical finite element discretization. Appl. Num. Math. 23, 403–442.

    Google Scholar 

  3. Chehab, J.-P., and Temam, R. (1995). Incremental unknowns for solving nonlinear eigenvalue problems: New multiresolution methods. Numer. Methods Partial Differential Equations 11, 199–228.

    Google Scholar 

  4. Chehab, J.-P. (1996). Solution of generalized Stokes problems using hierarchical methods and incremental unknowns. Appl. Numer. Math. 21, 9–42.

    Google Scholar 

  5. Chehab, J.-P. (1998). Incremental unknowns method and compact schemes. M2AN 32(1), 51–83.

    Google Scholar 

  6. Chehab, J.-P., and Miranville, A. (1998). Incremental unkowns method on nonuniform meshes. M2AN 32(5), 539–577.

    Google Scholar 

  7. Chen, M., and Temam, R. (1991). Incremental unknowns for solving partial differential equations. Numer. Math. 59, 255–271.

    Google Scholar 

  8. Chen, M., Miranville, A., and Temam, R. (1995). Incremental unknowns in finite difference in three space dimension. Comput. Appl. Math. 14(3), 1–15.

    Google Scholar 

  9. Costa, B, and Dettori, L. (1998). Fourier collocation splittings for partial differential equations, J. Comput. Phys. 20, 469–475.

    Google Scholar 

  10. Costa, B., Dettori, L., Gottlieb, D., and Temam, R. (2001). Time marching techniques for the nonlinear Galerkin method. SIAM. J. SC. Comp. 23(1), 46–65.

    Google Scholar 

  11. Debussche, A., Dubois, T., and Temam, R. (1995). The nonlinear Galerkin method: A multiscale method applied to the simulation of homogeneous turbulent flows, and theoretical and computational fluid dynamics 7(4), 279–315.

    Google Scholar 

  12. Dettori, L., Gottlieb, D., and Temam, R. (1995). A nonlinear Galerkin method: The two-level Fourier-collocation case. J. Sci. Comput. 10(4), 371–389.

    Google Scholar 

  13. Dettori, L., Gottlieb, D., and Temam, R. (1996). A nonlinear Galerkin method: The two-level Chebyshev-collocation case. In Ilin, A. V., and Scot, L. R. (eds.), Special Issue of Houston Journal of Mathematics, pp. 75–83.

  14. Dubois, T., Jauberteau, F., and Temam, R. (1999). Dynamic, Multilevel Methods and the Numerical Simulation of Turbulence, Cambridge University Press.

  15. Fornberg, B., and Whitham, G. B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. Roy. Soc. London Ser. A 289, 373–404.

    Google Scholar 

  16. Goubet, O. (1992). Construction of approximate inertial manifolds using wavelets, SIAM J. Math. Anal. 23(6), 1455–1481.

    Google Scholar 

  17. Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42.

    Google Scholar 

  18. Jolly, M. S., Rosa, R., and Temam, R. Accurate computations on inertial manifolds. SIAM. J. Sci. Comput. 22(6), 2216–2238.

  19. Marion, M., and Temam, R. (1989). Nonlinear Galerkin methods: SIAM J. Numer. Anal. 26, 1139–1157.

    Google Scholar 

  20. Marion, M., and Temam, R., (1990). Nonlinear Galerkin methods; The finite elements case. Numer. Math. 57, 205–226.

    Google Scholar 

  21. Pouit, F. (décembre 1998). Thèse, Université Paris-Sud, Orsay.

  22. Simonnet, E. (décembre 1998). Thèse, Université Paris-Sud.

  23. Tachim Medjo, T. (1997). Numerical solutions of the Navier–Stokes equations using wavelet-like incremental unknowns. RAIRO Modèl. Math. Anal. Numér. 31(7), 827–844.

    Google Scholar 

  24. Temam, R. (1997). Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer Verlag, Berlin, (2nd ed.).

    Google Scholar 

  25. Temam, R. (1990). Inertial manifolds and multigrid methods. SIAM J. Math. Anal. 21, 154–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chehab, JP., Costa, B. Time Explicit Schemes and Spatial Finite Differences Splittings. Journal of Scientific Computing 20, 159–189 (2004). https://doi.org/10.1023/B:JOMP.0000008719.48134.4f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMP.0000008719.48134.4f

Navigation