Skip to main content
Log in

Daytime Turbulence Statistics above a Steep Forested Slope

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Six levels of simultaneously sampled ultrasonic data are used to analyse the turbulence structure within a mixed forest of 13 m height on a steep slope (35°) in an alpine valley. The data set is compared to other studies carried out over forests in more ideal, flat terrain. The analysis is carried out for 30-min mean data, joint probability distributions, length scales and spectral characteristics.

Thermally induced upslope winds and cold air drainage lead to a wind speed maximum within the trunk space. Slope winds are superimposed on valley winds and the valley-wind component becomes stronger with increasing height. Slope and valley winds are thus interacting on different spatial and time scales leading to a quite complex pattern in momentum transport that differs significantly from surface-layer characteristics. Directional shear causes lateral momentum transports that are in the same order or even larger than the longitudinal ones. In the canopy, however, a sharp attenuation of turbulence is observed. Skewed distributions of velocity components indicate that intermittent turbulent transport plays an important role in the energy distribution.

Even though large-scale pressure fields lead to characteristic features in the turbulent structure that are superimposed on the canopy flow, it is found that many statistical properties typical of both mixing layers and canopy flow are observed in the data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, R. G.: 1992, Mountain Weather & Climate, 2nd edn., Routledge, London and New York, 402 pp.

    Google Scholar 

  • Christen, A., van Gorsel, E., Andretta, M., Calanca, P., Rotach, M. W., and Vogt, R.: 2000, 'Intercomparison of Ultrasonic Anemometers during the MAP-Riviera Project', in Ninth Conference on Mountain Meteorology, Aspen, CO, August 7-11, 2000, American Meteorological Society, 45 Beacon St., Boston, MA, pp. 130-131.

    Google Scholar 

  • Christen, A., van Gorsel, E., Vogt, R., Andretta, M., and Rotach, M. W.: 2001, 'Ultrasonic Anemometer Instrumentation at Steep Slopes: Wind Tunnel Study-Field Intercomparison-Measurements', in MAP Meeting Schliersee, in MAP Newsletter 15, May 14-16, pp. 206-209.

  • De Bruin, H. A. R., Kohsiek, W., and van den Hurk, B. J. J. M.: 1993, 'A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapour using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities', Boundary-Layer Meteorol. 63, 231-257.

    Google Scholar 

  • Egger, J.: 1990, 'Thermally Forced Flows: Theory', in W. Blumen (ed.), Atmospheric Processes over Complex Terrain, 23, American Meteorological Society, Boston, MA, pp. 43-57.

    Google Scholar 

  • Finnigan, J.: 2000, 'Turbulence in Plant Canopies', Annu. Rev. Fluid Mech. 32, 519-571.

    Google Scholar 

  • Finnigan, J. J. and Brunet, Y.: 1995, 'Turbulent Airflow in Forests on Flat and Hilly Terrain', in M. P. Coutts and J. Grace (eds.), Wind and Trees, Cambridge Universtiy Press, Cambridge, pp. 3-40.

    Google Scholar 

  • Kaimal, J. C.: 1978, 'Horizontal Velocity Spectra in an Unstable Surface Layer', J. Atmos. Sci. 35, 18-24.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, Oxford, 289 pp.

    Google Scholar 

  • Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A. D., Miranda, A. C., and Pereira, M. G. P.: 2000, 'Turbulence Statistics above and within Two Amazon Rain Forest Canopies', Boundary-Layer Meteorol. 94, 297-331.

    Google Scholar 

  • Maitani, T. and Shaw, R. H.: 1990, 'Joint Probability Analysis of Momentum and Heat Fluxes at a Deciduous Forest', Boundary-Layer Meteorol. 52, 283-300.

    Google Scholar 

  • Mazzoni, R.: 1996, Turbulenzstruktur im gestörten Nachlauf einer künstlichen Oberflächenmodifikation. Ein Feldexperiment, Ph.D. Dissertation, ETH Zürich, Zürich, 133 pp.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence-Models and Methods for Engineering Applications, J. Wiley, New York, 397 pp.

    Google Scholar 

  • Peltier, L. J., Wyngaard, J. C., Khanna, S., and Brasseur, J.: 1996, 'Spectra in the Unstable Surface Layer', J. Atmos. Sci. 53, 49-61.

    Google Scholar 

  • Rannik, Ñ. and Vesala, T.: 1999, 'Autoregressive Filtering versus Linear Detrending in Estimation of Fluxes by the Eddy Covariance Method', Boundary-Layer Meteorol. 91, 259-280.

    Google Scholar 

  • Raupach, M. R.: 1988, 'Canopy Transport Processes', in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment: Advances and Applications, Springer, Berlin, pp. 95-127.

    Google Scholar 

  • Raupach, M. R. and Finnigan, J. J.: 1997, 'The Influence of Topography on Meteorological Variables and Surface-Atmosphere Interactions', J. Hydrol. 190, 182-213.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, 'Turbulence in and above Plant Canopies', Annu. Rev. Fluid Mech. 13, 97-129.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy', Boundary-Layer Meteorol. 78, 351-382.

    Google Scholar 

  • Rotach, M.W., Calanca, C., Vogt, R., Steyn, D. G., Graziani, G., and Gurtz, J.: 2000, 'The Turbulence Structure and Exchange Processes in an Alpine Valley: TheMAP-Riviera Project', in Ninth Conference on Mountain Meteorology, Aspen, CO, August 7-11, American Meteorological Society, 45 Beacon St., Boston, MA, pp. 231-234.

    Google Scholar 

  • Shaw, R. H., Brunet, Y., Finnigan, J. J., and Raupach, M. R.: 1995, 'A Wind Tunnel Study of Air Flow inWaving Wheat: Two Point Velocity Statistics', Boundary-Layer Meteorol. 76, 349-376.

    Google Scholar 

  • Shaw, R. H., Tavangar, J., and Ward, D. P.: 1983, 'Structure of the Reynolds Stress in a Canopy Layer', J. Clim. Appl. Meteorol. 22, 1922-1931.

    Google Scholar 

  • Vogt, R.: 1995, Theorie, Technik und Analyse der experimentellen Flussbestimmung am Beispiel des Hartheimer Kiefernwaldes, Ph.D. Dissertation, University of Basel, Basel, 101 pp.

    Google Scholar 

  • Whiteman, C. D.: 1990, 'Observations of Thermally Developed Wind Systems in Mountinous Terrain', in W. Blumen (ed.), Atmospheric Processes over Complex Terrain, 23, American Meteorological Society, Boston, MA, pp. 5-42.

    Google Scholar 

  • Whiteman, C. D. and Allwine, K. J.: 1989, 'Deep Valley Radiation and Surface Energy Budget Microclimates. Part I: Radiation', J. Appl. Meteorol. 28, 414-426.

    Google Scholar 

  • Wood, N.: 2000, 'Windflow over Complex Terrain: A Historical Perspective and the Prospect for Large-Eddy Modelling', Boundary-Layer Meteorol. 96, 11-32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Gorsel, E., Christen, A., Feigenwinter, C. et al. Daytime Turbulence Statistics above a Steep Forested Slope. Boundary-Layer Meteorology 109, 311–329 (2003). https://doi.org/10.1023/A:1025811010239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025811010239

Navigation