Skip to main content
Log in

Comparative genomic mapping between a 754 kb region flanking DREB1A in Arabidopsis thaliana and maize

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Comparative mapping between model plant species for which the complete genome sequence is known and crop species has been suggested as a new strategy for the isolation of agronomically valuable genes. In this study, we tested whether comparative mapping between Arabidopsisand maize of a small region (754 kb) surrounding the DREB1A gene in Arabidopsis could lead to the identification of an orthologous region in maize containing the DREB1A homologue. The genomic sequence information available for Arabidopsis allowed for the selection of conserved, low-copy genes that were used for the identification of maize homologues in a large EST database. In total, 17 maize homologues were mapped. A second BLAST comparison of these genes to the recently completed Arabidopsis sequence revealed that 15 homologues are likely to be orthologous as the highest similarity score was obtained either with the original Arabidopsis gene or with a highly similar Arabidopsis gene localized on a duplication of the investigated region on chromosome 5. The map position of these genes showed a significant degree of orthology with the Arabidopsis region. Nevertheless, extensive duplications and rearrangements in the Arabidopsisand maize genomes as well as the evolutionary distance between Arabidopsis and maize make it unlikely that orthology and collinearity between these two species are sufficient to aid gene prediction and cloning in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3405.

    Google Scholar 

  • Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.

    Google Scholar 

  • Bancroft, I. 2001. Duplicate and diverge: the evolution of plant genome microstructure. Trends Genet. 17: 89-93.

    Google Scholar 

  • Bennetzen, J.L. 2000. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12: 1021-1029.

    Google Scholar 

  • Blanc, G., Barakat, A., Guyot, R., Cooke, R. and Delseny, M. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12: 1093-1101.

    Google Scholar 

  • Davis, G.L., McMullen, M.D., Baysdorfer, C., Musket, T., Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Melia-Hancock, S., Houchins, K., Chao, S. and Coe, E.H. Jr. 1999. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152: 1137-1172.

    Google Scholar 

  • Devos, K.M., Beales, J., Nagamura, Y. and Sasaki, T. 1999. Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Res. 9: 825-829.

    Google Scholar 

  • Devos, K.M. and Gale, M.D. 2000. Genome relationships: the grass model in current research. Plant Cell 12: 637-646.

    Google Scholar 

  • Doyle, J.J. and Gaut, B.S. 2000. Evolution of genes and taxa: a primer. Plant Mol. Biol. 42: 1-23.

    Google Scholar 

  • Gale, M.D. and Devos, K.M. 1998. Plant comparative genetics after 10 years. Science 282: 656-659.

    Google Scholar 

  • Gaut, B.S. 2001. Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res. 11: 55-66.

    Google Scholar 

  • Gaut, B.S. and Doebley, J.F. 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94: 6809-6814.

    Google Scholar 

  • Gaut, B.S., Le Thierry d'Enneguin, M., Peek, A.S. and Sawkins, M.C. 2000. Maize as a model for the evolution of plant nuclear genomes. Proc. Natl. Acad. Sci. USA 97: 7008-7015.

    Google Scholar 

  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M. and Thomashow, M.F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16: 433-442.

    Google Scholar 

  • Grant, D., Cregan, P. and Shoemaker, R.C. 2000. Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA 97: 4168-4173.

    Google Scholar 

  • Keller, B. and Feuillet, C. 2000. Colinearity and gene density in grass genomes. Trends Plant Sci. 5: 246-251.

    Google Scholar 

  • Ku, H.-M., Vision, T., Liu, J. and Tanksley, S.D. 2000. Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97: 9121-9126.

    Google Scholar 

  • Lagercrantz, U., Putterill, J., Coupland, G. and Lydiate, D. 1996. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J. 9: 13-20.

    Google Scholar 

  • Lan, T.H., DelMonte, T.A., Reischmann, K.P., Hyman, J., Kowalski, S.P., McFerson, J., Kresovich, S. and Paterson, A.H. 2000. EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res. 10: 776-788.

    Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391-1406.

    Google Scholar 

  • Moore, G., Devos, K.M., Wang, Z. and Gale, M.D. 1995. Grasses, line up and form a circle. Curr. Biol. 5: 737-739.

    Google Scholar 

  • Paterson, A.H., Lan, T.-H., Reischmann, K.P., Chang, C., Lin, Y.-R., Liu, S.-C., Burow, M.D., Kowalski, S.P., Katsar, C.S., Del Monte, T.A., Feldmann, K.A., Schertz, K.F. and Wendel, J.F. 1996. Towards a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nature Genet. 14: 380-382.

    Google Scholar 

  • Paterson, A.H., Bowers, J.E., Burow, M.D., Draye, X., Elsik, C.G., Jiang, C.-X., Katsar, C.S., Lan, T.-H., Lin,Y.-R., Ming, R. and Wright, R.J. 2000. Comparative genetics of plant chromosomes. Plant Cell 12: 1523-1539.

    Google Scholar 

  • Sharp, P.J., Desai, S. and Gale, M.D. 1988. Isozyme variation and RFLPs at the β-amylase loci in wheat. Theor. Appl. Genet. 76: 691-699.

    Google Scholar 

  • Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250: 161-170.

    Google Scholar 

  • Stam, P. 1993. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J. 3: 739-744.

    Google Scholar 

  • Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA 94: 1035-1040.

    Google Scholar 

  • Tikhonov, A.P., SanMiquel, P.J., Nakajima, Y., Gorenstein, N.M., Bennetzen, J.L. and Avramova, Z. 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96: 7409-7414.

    Google Scholar 

  • Tuberosa, R., Sanguineti, M.C., Landi, P., Salvi, S., Casarini, E. and Conti, S. 1998. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor. Appl. Genet. 97: 744-755.

    Google Scholar 

  • Tuberosa, R., Sanguineti, M.C., Landi, P., Giuliani, M., Salvi, S. and Conti, S. 2001. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 48: 697-712.

    Google Scholar 

  • van Dodeweerd, A.-M., Hall, C.R., Bent, E.G., Johnson, S.J., Bevan, M.W. and Bancroft, I. 1999. Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana. Genome 42: 887-892.

    Google Scholar 

  • Vision, T.J., Brown, D.G. and Tanksley, S.D. 2000. The origins of genomic duplications in Arabidopsis. Science 290: 2114-2117.

    Google Scholar 

  • White, S. and Doebley, J. 1998. Of genes and genomes and the origin of maize. Trends Genet. 14: 327-332.

    Google Scholar 

  • Wolfe, K.H. and Shields, D. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 208-213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Buuren, M.L., Salvi, S., Morgante, M. et al. Comparative genomic mapping between a 754 kb region flanking DREB1A in Arabidopsis thaliana and maize. Plant Mol Biol 48, 741–750 (2002). https://doi.org/10.1023/A:1014890008579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014890008579

Navigation