Skip to main content
Log in

An Optimized Iterative Method for Numerical Solution of Large Systems of Equations Based on the Extremal Property of Zeroes of Chebyshev Polynomials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An iterative method suitable for numerical solution of large systems of equations is presented. An extremal property of the Chebyshev polynomials is established, providing a logical foundation for the proposed procedure. A modification of the method is applicable for evaluation of the maximal eigenvalue of a matrix with real eigenvalues and of the associated eigenvector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arnold, V. I. (1965). Sur la topologie des écoulements stationnaires des fluides parfaits, Comptes Rendus Acad. Sci. Paris 11, 17–20 (in French).

    Google Scholar 

  • Arnold, V. I. (1992). Private communication.

  • Calvetti, D., Golub, G. H., and Reichel, L. (1994). An adaptive Chebyshev iterative method for nonsymmetric linear systems based on modified moments, Numerische Mathematik 67, 21–40.

    Google Scholar 

  • Chebyshev, P. L. (1854). The theory of mechanisms known under the name of parallelograms, in (1955) Selected Works, Nauka, Moscow, pp. 316–411 (in Russian); [French translation: (1962) Théorie des mécanismes connus sous le nom de parallélogrammes, in Oeuvres, Chelsea Publ. Co., New York, Vol. 1, pp. 111–143].

    Google Scholar 

  • Chebyshev, P. L. (1857). The problems of minimal quantities related to approximate representation of functions, in (1955) Selected Works, Nauka, Moscow, pp. 462–578 (in Russian); [French translation: (1962) Sur les questions de minima qui se rattachent à la représentation approximative des fonctions, in Oeuvres, Chelsea Publ. Co., New York, Vol. 1, pp. 273–378].

    Google Scholar 

  • Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr, A., and Soward, A. (1986). Chaotic streamlines in the ABC flows, J. Fluid Mech. 167, 353–391.

    Google Scholar 

  • Eiermann, M. (1989). On semiiterative methods generated by Faber polynomials, Numerische Mathematik 56, 139–156.

    Google Scholar 

  • Eiermann, M., and Niethammer, W. (1983). On the construction of semiiterative methods, SIAM J. Numer. Anal. 20(6), 1153–1160.

    Google Scholar 

  • Eiermann, M., Niethammer, W., and Varga, R. S. (1985). A study of semiiterative methods for nonsymmetric systems of linear equations, Numerische Mathematik 47, 505–533.

    Google Scholar 

  • Engeli, M., Ginsburg, T. H., Rutischauser, H., and Stieffel, E. (1959). Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Birkhäuser Verlag, Basel/Stuttgart.

    Google Scholar 

  • Finogenov, S. A., Lebedev, V. I., and Vlasov, Yu. A. (1986). On asymptotically optimal iterative methods taking into account information on the operator spectrum and the distribution of the initial error, J. Sov. J. Numer. Anal. Math. Modelling 1(4), 277–292.

    Google Scholar 

  • Fischer, B., and Freund, R. (1991). Chebyshev polynomials are not always optimal, J. Approximation Theory 65, 261–272.

    Google Scholar 

  • Galloway, D. J., and Frisch, U. (1987). A note on the stability of a family of space-periodic Beltrami flows, J. Fluid Mech. 180, 557–564.

    Google Scholar 

  • Golub, G. H., and Kent, M. D. (1989). Estimates of eigenvalues for iterative methods, Math. Comp. 53(188), 619–626.

    Google Scholar 

  • Golub, G. H., and Van Loan, C. F. (1989). Matrix Computations, The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Golub, G. H., and Varga, R. S. (1961). Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second order Richardson iterative methods, Numerische Mathematik 3, 147–156 (Part I); 157–168 (Part II).

    Google Scholar 

  • Gottliev, D., and Orszag, S. A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia.

    Google Scholar 

  • Gragg, W. B., and Reichel, L. (1987). On the application of orthogonal polynomials to the iterative solution of linear systems of equations with indefinite or non-hermitian matrices, Linear Algebra and Its Applications 88/89, 349–371.

    Google Scholar 

  • Hénon, M. (1966). Sur la topologie des lignes de courant dans un cas particulier, Comptes Rendus Acad. Sci. Paris 262, 312–314 (in French).

    Google Scholar 

  • Ho, D. (1990). Tchebychev acceleration technique for large scale nonsymmetric matrices, Numerische Mathematik 56, 721–734.

    Google Scholar 

  • Kaniel, S. (1966). Estimates for some computational techniques in linear algebra, Math. Comp. 20, 369–378.

    Google Scholar 

  • Lanczos, C. (1950). An iteration method for the solution of eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bureau of Standards 45, 255–282.

    Google Scholar 

  • Lanczos, C. (1952). Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bureau of Standards 49(1), 33–53.

    Google Scholar 

  • Lebedev, V. I., and Finogenov, S. A. (1973). Solution of the problem of the parameters ordering for Chebyshev iterative methods, J. Comp. Math. and Math. Phys. 13(1), 18–33 (in Russian).

    Google Scholar 

  • Lebedev, V. I., and Finogenov, S. A. (1976). On the use of ordered Chebyshev parameters in iterative methods. J. Comp. Math. and Math. Phys. 16(4), 895–907 (in Russian).

    Google Scholar 

  • Manteuffel, T. A. (1977). The Tchebychev iteration for nonsymmetric linear systems, Numerische Mathematik 28, 307–327.

    Google Scholar 

  • Manteuffel, T. A. (1978). Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration, Numerische Mathematik 31, 183–208.

    Google Scholar 

  • Niethammer, W., and Varga, R. S. (1983). The analysis of k-step iterative methods for linear systems from summability theory, Numerische Mathematik 41, 177–206.

    Google Scholar 

  • Nikolaev, E. S., and Samarskiy, A. A. (1972). Selection of the iterative parameters in the Richardson method, J. Comp. Math. and Math. Phys. 12(4), 960–973 (in Russian).

    Google Scholar 

  • Opfer, G., and Schober, G. (1984). Richardson's iteration for nonsymmetric matrices, Linear Algebra and Its Applications 58, 343–361.

    Google Scholar 

  • Podvigina, O., and Pouquet, A. (1994). On the non-linear stability of the 1:1:1 ABC flow, Physica D 75, 471–508.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes, Cambridge University Press.

  • Reichel, L. (1988). Polynomials by conformal mapping for the Richardson iteration method for complex linear systems, SIAM J. Numer. Anal. 25(6), 1359–1368.

    Google Scholar 

  • Reichel, L. (1991). The application of Leja points to Richardson iteration and polynomial preconditioning, Linear Algebra and Its Applications 154/156, 389–414.

    Google Scholar 

  • Richardson, L. F. (1910). The approximate solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Roy. Soc. Phil. Trans. 210A, 307–357.

    Google Scholar 

  • Rivlin, T. J. (1974). The Chebyshev Polynomials, Wiley-Interscience, New York.

    Google Scholar 

  • Rogosinski, W. W. (1955). Some elementary inequalities for polynomials, Math. Gaz. 39, 7–12.

    Google Scholar 

  • Rosenblum, G. V., Shubin, M. A., and Solomyak, M. Z. (1989). Spectral theory of differential operators. Partial differential equations—7, Itogi Nauki i Tehniki. Fundamental'nye Napravleniya 64, M. A. Shubin, (ed.), VINITI, Moscow (in Russian); [English translation: (1994) Differential Equations VII, Springer-Verlag, Berlin].

    Google Scholar 

  • Saad, Y. (1984). Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Math. Comput. 42, 567–588.

    Google Scholar 

  • Taylor, M. E. (1981). Pseudodifferential Operators, Princeton University Press.

  • Varga, R. S. (1962). Matrix Iterative Analysis, Prentice Hall, New Jersey.

    Google Scholar 

  • Voronovskaja, E. V. (1970). The Functional Method and Its Applications. Translations of mathematical monographs, Vol. 28, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem, Oxford University Press.

  • Wrigley, H. E. (1963). Accelerating the Jacobi method for solving simulataneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex, Computer J. 6, 169–176.

    Google Scholar 

  • Young, D. (1953). On Richardson's method for solving linear systems with positive definite matrices, J. Math. Phys. 32, 243–255.

    Google Scholar 

  • Zheligovsky, O., and Pouquet, A. (1993). Hydrodynamic Stability of the ABC Flow. Solar and Planetary Dynamos, Proceedings of a NATO Advanced Study Institute held at the Isaad Newton Institute, Cambridge, September 1992, Proctor, M. R. E., Matthews, P. C., and Rucklidge, A. M. (eds.), Cambridge University Press, pp. 347–354.

  • Zheligovsky, V. A. (1993). Numerical solution of the kinematic dynamo problem for Beltrami flows in a sphere, J. Sci. Comput. 8(1), 41–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zheligovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheligovsky, V.A., Podvigina, O.M. An Optimized Iterative Method for Numerical Solution of Large Systems of Equations Based on the Extremal Property of Zeroes of Chebyshev Polynomials. Journal of Scientific Computing 12, 433–464 (1997). https://doi.org/10.1023/A:1025681013942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025681013942

Navigation