Skip to main content
Log in

A Legendre-Spectral Element Method for Flow and Heat Transfer About an Accelerating Droplet

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The problem of flow and heat transfer associated with a spherical droplet accelerated from rest under gravitational force is studied; using a Legendre-spectral element method in conjunction with a mixed time integration procedure to advance the solution in time. An influence matrix technique which exploits the superposition principle is adapted to resolve the lack of vorticity boundary conditions and to decouple the equations from the interfacial couplings. The computed flow and temperature fields, the drag coefficient, the Nusselt number, and the interfacial velocity and vorticity are presented for a drop moving vertically in a quiescent gas of infinite extent to illustrate the evolution of the flow and temperature fields. Comparison of the predicted drag coefficient and the Nusselt number against previous numerical and experimental results indicate good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abdel-Alim, A. H., and Hamielec, A. E. (1975). A theoretical and experimental investigation of the effect of internal circulation on the drag of spherical doplets falling at terminal velocity in liquid media, Ind. Eng. Chem., Fund. 14, 308–312.

    Google Scholar 

  • Canuto, C., Hussaini, M. H., Quarteroni, A., and Zang, T. A. (1988). Spectral methods in Fluid Dynamics, Springer-Verlag, New York.

    Google Scholar 

  • Chao, B. T. (1962). Motion of spherical has bubbles in a viscous liquid at large Reynolds numbers, Phys. Fluids 5, 69–79.

    Google Scholar 

  • Chisnell, R. F. (1987). The unsteady motion of a drop moving vertically under gravity, J. Fluid Mech. 176, 443–464.

    Google Scholar 

  • Clift, R., Grace, J. R., and Weber, M. E. (1978). Bubbles, Drops, and Particles, Academic Press, New York.

    Google Scholar 

  • Elzinga, E. R., and Banchero, J. T. (1961). AIChE J. 7, 394.

    Google Scholar 

  • Fox, L., and Parker, I. (1968). Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London.

    Google Scholar 

  • Froessling, N. (1938). Gerlands Beitr. Geophysics 52, 170.

    Google Scholar 

  • Gottlieb, D., and Orszag, S. A. (1977). Numerical Analysis of Spectral methods: Theory and Applications, SIAM, Philadelphia.

    Google Scholar 

  • Hadamard, J. (1911). Mouvement permanent lent d'une sphère liquide et visqueuse dans un liquide visqueux, C. R. Acad. Sci. 152, 1735–1738.

    Google Scholar 

  • LeClair, B. P., Hamielec, A. E., Pruppacher, H. R., and Hall, W. D. (1972). A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air, J. Atmos. Sci. 29, 728–740.

    Google Scholar 

  • Lin, C. L., and Lee, S. C. (1973). Transient state analysis of separated flow around a sphere, Comput. and Fluids 1, 235–250.

    Google Scholar 

  • Nguyen, H. D., Paik, S., and Chung, J. N. (1992). A combined Galerkin/collocation spectral method for transient solution of flow past a spherical droplet, in Sohal, M. S., and Rabas, T. J., (eds.), Two-Phase Flow in Energy Exchange Systems, The American Society of Mechanical Engineers, New York, p. 87.

    Google Scholar 

  • Nguyen, H. D., Paik, S., and Chung, J. N. (1993a). Unsteady conjugate heat transfer associated with a translating spherical droplet: a direct numerical simulation. Num. Heat Transfer., Part A 24, 161–180.

    Google Scholar 

  • Nguyen, H. D., Paik, S., and Chung, J. N. (1993b). Unsteady mixed convection heat transfer from a solid sphere: the conjugate problem, Int. J. Heat Mass Transfer 36, 4443–4453.

    Google Scholar 

  • Oliver, D. L. R;, and Chung, J. N. (1985). Steady flows inside and around a fluid sphere at low Reynolds numbers, J. Fluid Mech. 154, 215–230.

    Google Scholar 

  • Oliver, D. L. R., and Chung, J. N. (1986). Conjugate unsteady heat transfer from a spherical droplet at low Reynolds numbers, Int. J. heat Mass Transfer 29, 879–887.

    Google Scholar 

  • Oliver, D. L. R., and Chung, J. N. (1987). Flow about a fluid sphere at low to moderate Reynolds numbers, J. Fluid Mech. 177, 18.

    Google Scholar 

  • Oliver, D. L. R., and Chung, J. N. (1990). Unsteady conjugate heat transfer from a translating fluid sphereat moderate Reynolds numbers, Int. J. Heat Mass Transfer 33, 401–408.

    Google Scholar 

  • Patera, A. T. (1984). A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys. 54, 468–488.

    Google Scholar 

  • Rivkind, V. Ya., Ryskin, G. M., and Fishbein, G. A. (1976). Appl. Math. Mech. 40, 687.

    Google Scholar 

  • Rybczynski, W. (1911). Uber die fortschreitende bewegung einer flussigen kugel in einem zaben medium, Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci. Math. Nat., Ser. A, 40.

    Google Scholar 

  • Taylor, T. D., and Acrivos, A. (1964). On the deformation and drag of a falling viscous drop at low Reynolds number, J. Fluid Mech. 18, 466.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H.D., Paik, S. & Douglass, R.W. A Legendre-Spectral Element Method for Flow and Heat Transfer About an Accelerating Droplet. Journal of Scientific Computing 12, 75–97 (1997). https://doi.org/10.1023/A:1025610521095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025610521095

Navigation