Skip to main content
Log in

A Level Set Algorithm for Tracking Discontinuities in Hyperbolic Conservation Laws II: Systems of Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A level set algorithm for tracking discontinuities in hyperbolic conservation laws is presented. The algorithm uses a simple finite difference approach, analogous to the method of lines scheme presented in [36]. The zero of a level set function is used to specify the location of the discontinuity. Since a level set function is used to describe the front location, no extra data structures are needed to keep track of the location of the discontinuity. Also, two solution states are used at all computational nodes, one corresponding to the “real” state, and one corresponding to a “ghost node” state, analogous to the “Ghost Fluid Method” of [12]. High order pointwise convergence was demonstrated for scalar linear and nonlinear conservation laws, even at discontinuities and in multiple dimensions in the first paper of this series [3]. The solutions here are compared to standard high order shock capturing schemes, when appropriate. This paper focuses on the issues involved in tracking discontinuities in systems of conservation laws. Examples will be presented of tracking contacts and hydrodynamic shocks in inert and chemically reacting compressible flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., and Sethian, J. A. (1999). The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2-22.

    Google Scholar 

  2. Arora, M., and Roe, P. L. (1997). On postshock oscillations due to shock capturing schemes in unsteady flows. J. Comput. Phys. 130, 25-40.

    Google Scholar 

  3. Aslam, T. D. (2001). A level set algorithm for tracking discontinuities in hyperbolic conservation laws I: Scalar equations. J. Comput. Phys. 167, 413-438.

    Google Scholar 

  4. Aslam, T. D., Hill, L. G., and Bdzil, J. B. (1998). Extensions to DSD theory: Analysis of PBX 9502 rate stick data. Eleventh International Detonation Symposium, pp. 21-29.

  5. Carpenter, M., and Casper, J. (1999). Accuracy of shock capturing in two spatial dimensions. AIAA J. 37, 1072-1079.

    Google Scholar 

  6. Casper, J., and Carpenter, M. (1998). Computational considerations for the simulation of shock-induced sound. SIAM J. Sci. Comput. 19, 813-828.

    Google Scholar 

  7. Chern, I.-L., Glimm, J., McBryan, O., Plohr, B., and Yaniv, S. (1986). Front tracking for gas dynamics. J. Comput. Phys. 62, 83-110.

    Google Scholar 

  8. Charrier, P., and Tessieras, B. (1986). On front-tracking methods applied to hyperbolic systems of nonlinear conservation laws. SIAM J. Numer. Anal. 23, 461-472.

    Google Scholar 

  9. Donat, R. (1994). Studies on error propagation for certain nonlinear approximations to hyperbolic equations: Discontinuities in derivatives. SIAM J. Numer. Anal. 31, 655-679.

    Google Scholar 

  10. Donat, R., and Osher, S. (1990). Propagation of error into regions of smoothness for non-linear approximations to hyperbolic equations. Comput. Meth. Appl. Mech. and Eng. 80, 59-64.

    Google Scholar 

  11. Engquist, B., and Sjogreen, B. (1998). The convergence rate of finite difference schemes in the presence of shocks. SIAM J. Numer. Anal. 35, 2464-2485.

    Google Scholar 

  12. Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. (1999). A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457-492.

    Google Scholar 

  13. Fedkiw, R. P., Aslam, T., and Xu, S. (1999). The ghost fluid method for deflagration and detonation discontinuities. J. Comput. Phys. 154, 393-427.

    Google Scholar 

  14. Fedkiw, R. P. (2002). Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175, 200-224.

    Google Scholar 

  15. Fedkiw, R. P., Merriman, B., and Osher, S. (1998). Efficient characteristic projection in upwind difference schemes for hyperbolic systems (the complimentary projection method). J. Comput. Phys. 141, 22-36.

    Google Scholar 

  16. Fickett, W., and Wood, W. W. (1966). Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903-916.

    Google Scholar 

  17. Fickett, W., and Davis, W. C. (1979) Detonation, University of California Press, Berkeley.

    Google Scholar 

  18. Harten, A. (1989). ENO schemes with subcell resolution. J. Comput. Phys. 82, 148-184.

    Google Scholar 

  19. Harten, A., Engquist, B., Osher, J., and Chakravarthy, S. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231-303.

    Google Scholar 

  20. Hwang, P., Fedkiw, R. P., Merriman, B., Aslam, T. D., Karagozian, A. R., and Osher, S. J. (2000). Numerical resolution of pulsating detonation waves. Combust. Theory Modelling. 4, 217-240.

    Google Scholar 

  21. Jiang, G.-S., and Peng, D. (1997). Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126-2143.

    Google Scholar 

  22. Jiang, G.-S., and Shu, C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228.

    Google Scholar 

  23. Kreiss, G., Efraimsson, G., and Nordstrom, J. (2001). Elimination of first order errors in shock calculations. SIAM J. Numer. Anal. 38, 1986-1998.

    Google Scholar 

  24. LeVeque, R. J. (1992). Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel.

    Google Scholar 

  25. LeVeque, R. J., and Shyue, K.-M. (1995). Two-dimensional front tracking based on high resolution wave propagation methods. SIAM J. Sci. Comput. 16, 348-377.

    Google Scholar 

  26. Liu, X.-D., and Osher, S. (1998). Convex ENO high order multi-dimensional schemes without field-by-field decomposition or staggered grids. J. Comput. Phys. 142, 304-330.

    Google Scholar 

  27. Liu, X.-D., Osher, S., and Chan, T. (1994). Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200-212.

    Google Scholar 

  28. Mao, D.-K. (1991). A treatment of discontinuities in shock-capturing finite difference methods. J. Comput. Phys. 92, 422-455.

    Google Scholar 

  29. Mao, D.-K. (1992). A treatment of discontinuities for finite difference methods. J. Comput. Phys. 103, 359-369.

    Google Scholar 

  30. Mao, D.-K. (1993). A treatment of discontinuities for finite difference methods in the two-dimensional case. J. Comput. Phys. 104, 377-397.

    Google Scholar 

  31. Nguyen, D., Gibou, F., and Fedkiw, R. (2002). A fully conservative ghost fluid method and stiff detonation waves. Twelfth International Detonation Symposium.

  32. Osher, S., and Sethian, S. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12-49.

    Google Scholar 

  33. Quirk, J. J. (1994). A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids. 18, 555-574.

    Google Scholar 

  34. Roberts, T. W. (1990). The behavior of flux difference splitting schemes near slowly moving shock waves. J. Comput. Phys. 90, 141-160.

    Google Scholar 

  35. Sever (Mock), M. (1985). Order of dissipation near rarefaction centers. In Progress and Supercomputing in Computational Fluid Dynamics, Proceedings of U.S.-Israel Workshop, Birkhäuser, Boston, p. 395.

    Google Scholar 

  36. Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439-471.

    Google Scholar 

  37. Shu, C.-W., and Osher, S. (1989). Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32-78.

    Google Scholar 

  38. Tang, P. K., Johnson, J. N., and Forest, C. A. (1985). Modeling heterogeneous high explosive burn with an explicit hot-spot process. Eighth Symposium (International) on Detonation, pp. 52-61.

  39. Toro, E. F. (1998). Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin.

    Google Scholar 

  40. Whitham, G. B. (1974). Linear and Nonlinear Waves, Wiley, New York.

    Google Scholar 

  41. Xu, S., Aslam, T., and Stewart, D. S. (1997). High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries. Combust. Theory Modelling 1, 113-142.

    Google Scholar 

  42. Yang, H. (1990). An artificial compression method for eno schemes: The slope modification method. J. Comput. Phys. 89, 125-160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslam, T.D. A Level Set Algorithm for Tracking Discontinuities in Hyperbolic Conservation Laws II: Systems of Equations. Journal of Scientific Computing 19, 37–62 (2003). https://doi.org/10.1023/A:1025387405273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025387405273

Navigation