Skip to main content
Log in

Construction of Shapes Arising from the Minkowski Problem Using a Level Set Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Minkowski problem asks a fundamental question in differential geometry whose answer is not only important in that field but has real world applications as well. We endeavor to construct the shapes that arise from the Minkowski problem by forming a PDE that flows an initial implicitly defined hypersurface to an approximation of the shape under the level set framework. Tools and ideas found in the various applications of level set methods are gathered to generate this PDE. Numerically, its solution is determined by incorporating high order finite difference schemes over the uniform grid available in the framework. Finally, we use our approach in various test cases to generate various shapes arising from different given data in the Minkowski problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., and Sethian, J. A. (1995). A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269-277.

    Google Scholar 

  2. Adalsteinsson, D., and Sethian, J. A. (1999). The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2-22.

    Google Scholar 

  3. Ambrosio, L., and Soner, H. M. (1996). Level set approach to mean curvature flow in arbitrary codimension. J. Differential Geom. 43, 693-737.

    Google Scholar 

  4. Chen, S., Merriman, B., Osher, S., and Smereka, P. (1997). A simple level set method for solving Stefan problems. J. Comput. Phys. 135, 8-29.

    Google Scholar 

  5. Cheng, L.-T. (2000). The Level Set Method Applied to Geometrically Based Motion, Materials Science, and Image Processing. Ph.D. thesis, University of California, Los Angeles.

    Google Scholar 

  6. Cheng, S. Y., and Yau, S. T. (1976). On the regularity of the solution of the n-dimensional Minkowski problem. Comm. Pure Appl. Math. 29, 495-516.

    Google Scholar 

  7. Chou, K.-S., and Wang, X.-J. (2000). A logarithmic Gauss curvature flow and the Minkowski problem. Ann. Inst. H. Poincaré Anal. Non Lineaire 17(6), 733-751.

    Google Scholar 

  8. Danielsson, P. (1980). Euclidean distance mapping. Computer Graphics and Image Processing 14, 227-248.

    Google Scholar 

  9. do Carmo, M. (1976). Differential Geometry of Curves and Surfaces, Prentice–Hall, Inc. Translated from the Portuguese.

  10. Helmsen, J., Puckett, E., Colella, P., and Dorr, M. (1996). Two new methods for simulating photolithography development in 3D. Proc. SPIE 2726, 253-261.

    Google Scholar 

  11. Jiang, G. S., and Peng, D. (2000). Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Scient. Comput. 21(6), 2126-2143.

    Google Scholar 

  12. Kaasalainen, M., Lamberg, L., and Lumme, K. (1992). Interpretation of lightcurves of atmosphereless bodies. 2. Practical aspects of inversion. Astron. Astrophys. 259, 333-340.

    Google Scholar 

  13. Kaasalainen, M., Lamberg, L., Lumme, K., and Bowell, E. (1992). Interpretation of lightcurves of atmosphereless bodies. 1. General theory and new inversion schemes. Astron. Astrophys. 259, 318-332.

    Google Scholar 

  14. Kang, M., Merriman, B., Osher, S., and Smereka, P. (1996). Level Set Approach for the Motion of Soap Bubbles with Curvature Dependent Velocity or Acceleration. CAM Report 96-19, UCLA.

  15. Lamberg, L. (1993). On the Minkowski Problem and the Lightcurve Operator, Ph.D. thesis, University of Helsinki.

  16. Lamberg, L., and Kaasalainen, M. (2001). Numerical solution of the Minkowski problem. J. Comput. Appl. Math. 137(2), 213-227.

    Google Scholar 

  17. Lewy, H. (1938). On differential geometry in the large 1 (Minkowski's Problem). Trans. Amer. Math. Soc. 43(2), 258-270.

    Google Scholar 

  18. Majda, A. (1976). The inverse problem for convex bodies. Proc. Natl. Acad. Sci. USA 73(5), 1377-1378.

    Google Scholar 

  19. Nirenberg, L. (1953). The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math. 6, 337-394.

    Google Scholar 

  20. Osher, S., and Fedkiw, R. (2001). Level set methods: An overview and some recent results. J. Comput. Phys. 169, 463-502.

    Google Scholar 

  21. Osher, S., and Merriman, B. (1997). The Wulff shape as the asymptotic limit of a growing crystal interface. Asian J. Math. 1(3), 560-571.

    Google Scholar 

  22. Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 169(1), 12-49.

    Google Scholar 

  23. Osher, S., and Shu, C.-W. (1991). High order essentially non-oscillatory schemes for Hamilton–Jacobi equations. SINUM 28, 907-922.

    Google Scholar 

  24. Peng, D., Merriman, B., Osher, S., Zhao, H. K., and Kang, M. (1999). A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410-438.

    Google Scholar 

  25. Pogorelov, A. V. (1975). The Multidimensional Minkowski Problem, Izdat. “Nauka”, Moscow.

  26. Pogorelov, A. V. (1978). The Multidimensional Minkowski Problem, Wiley.

  27. Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268.

    Google Scholar 

  28. Sethian, J. A. (1996). Fast marching level set methods for three dimensional photolithography development. Proc. SPIE 2726, 261-272.

    Google Scholar 

  29. Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439-471.

    Google Scholar 

  30. Spiteri, R. J., and Ruuth, S. J. (2002). A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40(2): 469-491.

    Google Scholar 

  31. Sussman, M., Smereka, P., and Osher, S. (1994). A level set method for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146-159.

    Google Scholar 

  32. Tsai, Y.-H., Cheng, L.-T., Osher, S., and Zhao, H. K. (2001). Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal., to appear.

  33. Tsitsiklis, J. N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 50, 1528-1538.

    Google Scholar 

  34. Zhao, H. K., Chan, T. F., Merriman, B., and Osher, S. (1996). A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179-195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, LT. Construction of Shapes Arising from the Minkowski Problem Using a Level Set Approach. Journal of Scientific Computing 19, 123–138 (2003). https://doi.org/10.1023/A:1025343723019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025343723019

Navigation