Skip to main content
Log in

A Robust Spectral Element Method for Simulations of Time-Dependent Viscoelastic Flows, Derived from the Brownian Configuration Field Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is an extension of previous work [4], where a robust numerical method derived from the Brownian configuration field method [8] was introduced in order to simulate the flows of dilute polymeric solutions. In [4], we limited our study to solutions of dumbbells having infinite extensibility (Oldroyd-B model), whereas in this paper, we tackle the more difficult problem of dumbbells having finite extensibility (FENE-P model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bird, R. B., Armstrong, R. A., and Hassager, O. (1987). Dynamics of Polymeric Liquids, Wiley Interscience, New York.

    Google Scholar 

  2. Bonvin, J. (2000). Numerical Simulation of Viscoelastic Fluids with Mesoscopic Models, Ph.D. thesis, Department of Mathematics, École Polytechnique Fédérale de Lausanne.

  3. Bonvin, J., and Picasso, M. (1999). Variance reduction methods for CONNFFESSIT-like simulations. J. Non-Newtonian Fluid Mech. 84, 191–215.

    Google Scholar 

  4. Chauvière, C. (2001a). A new method for micro-macro simulations of viscoelastic flows. SIAM J. Sci. Comput. To appear.

  5. Chauvière, C. (2001b). Stabilized Spectral Element Methods for the Simulation of Viscoelastic Flows, Ph.D. thesis, Department of Mechanical Engineering, École Polytechnique Fédérale de Lausanne.

  6. Chauvière, C., and Owens, R. G. (2001). A new spectral element method for the reliable computation of viscoelastic flow. Comput. Meth. Appl. Mech. Engrg. 190, 3999–4018.

    Google Scholar 

  7. Van Heel, A. P. G, Hulsen, M. A., and van den Brule, B. H. A. A. (1998). On the selection of parameters in the FENE-P model. J. Non-Newtonian Fluid Mech. 75, 253–271.

    Google Scholar 

  8. Hulsen, M. A., Van Heel, A. P. G., and van den Brule, B. H. A. A. (1997). Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newtonian Fluid Mech. 70, 79–101.

    Google Scholar 

  9. Karniadakis, G. E., and Sherwin, S. J. (1999). Spectral/hp Element Methods for CFD, Oxford University Press, Oxford, United Kingdom.

    Google Scholar 

  10. Owens, R. G., and Phillips, T. N. (2002) Computational Rheology, Imperial College Press/World Scientific, London.

    Google Scholar 

  11. Öttinger, H.-C., van den Brule, B. H. A. A., and Hulsen, M. A. (1997). Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newtonian Fluid Mech. 70, 255–261.

    Google Scholar 

  12. Öttinger, H.-C. (1996). Stochastic Processes in Polymeric Fluids, Springer-Verlag, Berlin. 13. Patera, A. T. (1984). A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comp. Phys. 54, 468–488. 14. Xiu, D., and Karniadakis, G. E. (2001). Modeling Uncertainty in Flow Simulations via Polynomial Chaos, Presented at ICOSAHOM'01, Uppsala, Sweden.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvière, C., Owens, R.G. A Robust Spectral Element Method for Simulations of Time-Dependent Viscoelastic Flows, Derived from the Brownian Configuration Field Method. Journal of Scientific Computing 17, 191–199 (2002). https://doi.org/10.1023/A:1015152631360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015152631360

Navigation