Skip to main content
Log in

Toward Non Commutative Numerical Analysis: High Order Integration in Time

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We review some methods for high precision time integration: it is not easy to ensure stability, precision and numerical efficiency at the same time. Operator splitting—when it works—can be a good way to satisfy all these constraints; in some cases, the order of the splitting schemes can be enhanced by extrapolation; nevertheless, the applicability of splitting is limited due to non commutativity. As an alternative to splitting, we introduce preconditioned Runge–Kutta (PRK) schemes: the preconditioning is included in the scheme, instead of being put aside for implementation. Examples of PRK schemes are given including the extrapolation of the residual smoothing scheme, and sufficient conditions for stability are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Akrivis, G., Crouzeix, M., and Makridakis, C. (1998). Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67(222), 457–477, ISSN 0025–5718.

    Google Scholar 

  • Averbuch, A., Cohen, A., and Israeli, M. (1998). A stable and accurate explicit scheme for parabolic evolution equations. URL http://ann.jussieu.fr/'cohen/par.ps.gz.

  • Butcher, J. C. (1987). The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods, Wiley, Chichester.

    Google Scholar 

  • Butcher, J. C., and Diamantakis, M. T. (1998). DESIRE: diagonally extended singly implicit Runge-Kutta effective order methods. Numer. Algorithms 17(1/2), 121–145, ISSN 1017–1398.

    Google Scholar 

  • Butcher, J. C., and Jackiewicz, Z. (1997). Implementation of diagonally implicit multistage integration methods for ordinary differential equations. SIAM J. Numer. Anal. 34(6), 2119–2141, ISSN 0036–1429.

    Google Scholar 

  • Butcher, J. C., and Jackiewicz, Z. (1998). Construction of high order diagonally implicit multistage integration methods for ordinary differential equations. Appl. Numer. Math. 27(1), 1–12, ISSN 0168–9274.

    Google Scholar 

  • Canuto, C., and Quarteroni, A. (1985). Preconditioned minimal residual methods for Chebyshev spectral calculations. J. Comput. Phys. 60(2), 315–337, ISSN 0021–9991.

    Google Scholar 

  • Chorin, A. J. (1968). Numerical solution of the Navier–Stokes equations. Math. Comp. 22, 745–762.

    Google Scholar 

  • Descombes, S., and Dia, B. O. (1999). An operator-theoretic proof of an estimate on the transfer operator. J. Funct. Anal. 165(2), 240–257, ISSN 0022–1236.

    Google Scholar 

  • Descombes, S., and Ribot, M. (2001). Convergence of the Peaceman-Rachford approximation for reaction-diffusion systems. Technical Report 287, UMPA, Ecole Normale Supérieure de Lyon, France. URL http://www.umpa.ens-lyon.fr/~sdescomb/pr.ps (submitted for publication).

    Google Scholar 

  • Descombes, S., Ribot, M., and Schatzman, M. (2002). Projection and splitting. Technical Report, MAPLY, Université Claude Bernard Lyon 1, France (work in progress).

    Google Scholar 

  • Deville, M., and Mund, E. (1985). Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning. J. Comput. Phys. 60(3), 517–533, ISSN 0021–9991.

    Google Scholar 

  • Deville, M., and Mund, E. (1990). Finite-element preconditioning for pseudospectral solutions of elliptic problems. SIAM J. Sci. Statist. Comput. 11(2), 311–342, ISSN 0196–5204.

    Google Scholar 

  • Deville, M., and Mund, E. (1992). Fourier analysis of finite element preconditioned collocation schemes. SIAM J. Sci. Statist. Comput. 13(2), 596–610, ISSN 0196–5204.

    Google Scholar 

  • Dia, B. O., and Schatzman, M. (1995). Estimations sur la formule de Strang. C. R. Acad. Sci. Paris Sér. I Math. 320(7), 775–779, ISSN 0764–4442.

    Google Scholar 

  • Dia, B. O., and Schatzman, M. (1996). Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér. 30(3), 343–383, ISSN 0764–583X.

    Google Scholar 

  • Dia, B. O., and Schatzman, M. (1997). An estimate of the Kac transfer operator. J. Funct. Anal. 145(1), 108–135, ISSN 0022–1236.

    Google Scholar 

  • Dia, B. O., and Schatzman, M. (February 1998). On the order of extrapolation of integration formulae. Technical Report 275, Equipe d'Analyse Numérique Lyon Saint-Etienne, Université Claude Bernard Lyon 1. URL http://www.numerix.univ-lyon1.fr/publis/publiv/ 1998/dia190298/texte.ps.

  • Druskin, V. L., and Knizhnerman, L. A. (1989). Two polynomial methods for calculating functions of symmetric matrices. Zh. Vychisl. Mat. i Mat. Fiz. 29(12), 1763–1775, ISSN 0044–4669.

    Google Scholar 

  • Gegechkori, Z., Rogava, J., and Tsiklauri, M. (1999). A sequential-parallel method of high degree precision for Cauchy abstract problem solution. Technical Report Vol. 14, No. 3, I. Vekua Institute of Applied Mathematics, Tbilisi, Iv. Javakhishvili Tbilisi State University. Report of the Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics.

  • Gegechkori, Z., Rogava, J., and Tsiklauri, M. (2001). High Degree Precision Decomposition Method for the Evolution Problem with an Operator in Split Form, Iv. Javakhishvili Tbilisi State University (preprint).

  • Jahnke, T., and Lubich, C. (2000). Error bounds for exponential operator splittings. BIT 40(4), 735–744, ISSN 0006–3835.

    Google Scholar 

  • Orszag, S. A. (1980). Spectral methods for problems in complex geometries. J. Comput. Phys. 37(1), 70–92, ISSN 0021–9991.

    Google Scholar 

  • Ostermann, A., and Roche, M. (1993). Rosenbrock methods for partial differential equations and fractional orders of convergence. SIAM J. Numer. Anal. 30(4), 1084–1098, ISSN 0036–1429.

    Google Scholar 

  • Peaceman, D. W., and Rachford, Jr., H. H. (1955). The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41.

    Google Scholar 

  • Ribot, M., and Schatzman, M. (2001). Extrapolation of the residual smoothing scheme: Commutators. Technical Report, Laboratoire de mathématiques appliquées de Lyon.

  • Ribot, M., and Schatzman, M. (2002). Extrapolation of the residual smoothing scheme: Energy norms. Technical Report, Laboratoire de mathématiques appliquées de Lyon.

  • Schatzman, M. (1999). Stability of the Peaceman-Rachford approximation. J. Funct. Anal. 162(1), 219–255, ISSN 0022–1236.

    Google Scholar 

  • Sheng, Q. (1989). Solving linear partial differential equations by exponential splitting. IMA J. Numerical Anal. 9, 199–212.

    Google Scholar 

  • Strang, G. (1968). On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517.

    Google Scholar 

  • Témam, R. (1969a). Sur l'approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. I. Arch. Rational Mech. Anal. 32, 135–153.

    Google Scholar 

  • Témam, R. (1969b). Sur l'approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II. Arch. Rational Mech. Anal. 33, 377–385.

    Google Scholar 

  • Yoshida, H. (1990). Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268, ISSN 0375–9601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schatzman, M. Toward Non Commutative Numerical Analysis: High Order Integration in Time. Journal of Scientific Computing 17, 99–116 (2002). https://doi.org/10.1023/A:1015140328635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015140328635

Navigation