Skip to main content
Log in

A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we extend a previous work on a compact scheme for the steady Navier–Stokes equations [Li, Tang, and Fornberg (1995), Int. J. Numer. Methods Fluids, 20, 1137–1151] to the unsteady case. By exploiting the coupling relation between the streamfunction and vorticity equations, the Navier–Stokes equations are discretized in space within a 3×3 stencil such that a fourth order accuracy is achieved. The time derivatives are discretized in such a way as to maintain the compactness of the stencil. We explore several known time-stepping approaches including second-order BDF method, fourth-order BDF method and the Crank–Nicolson method. Numerical solutions are obtained for the driven cavity problem and are compared with solutions available in the literature. For large values of the Reynolds number, it is found that high-order time discretizations outperform the low-order ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ascher, U., Ruuth, S. J., and Wetton, B. T. R. (1995). Implicit-explicit methods for timedependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823.

    Google Scholar 

  2. Ascher, U., and Petzold, L. R. (1998). Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia.

    Google Scholar 

  3. Chen, G. Q., Gao, Z., and Yang, Z. F. (1993). A perturbation h4 exponential finite difference scheme for the convective diffusion equation. J. Comput. Phys. 104, 129–139.

    Google Scholar 

  4. Chudanov, V. V., Popkov, A. G., Churbanov, A. G., Vabishchevich, P. N, and Makarov, M. M. (1995). Operator-splitting schemes for the stream function-vorticity formulation.Comput. Fluids 24, 771–786.

    Google Scholar 

  5. Dennis, S. C. R, and Hudson, J. D. (1989). Compact h4 finite-difference approximations to operators of Navier-Stokes type. J. Comput. Phys. 85, 390–416.

    Google Scholar 

  6. E, W. (2001). Numerical methods for viscous incompressible flows: some recent advances. In Proceedings of Workshops in Scientific Computing Hong Kong '99, Z.-C. Shi et al. (eds.), Science Press, to appear.

  7. E, W., and Liu, J.-G. (1996). Essentially compact schemes for unsteady viscous incom-pressible flows. J. Comput. Phys. 126, 122–138.

    Google Scholar 

  8. E, W., and Liu, J.-G. (1996). Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124, 368–382.

    Google Scholar 

  9. Ghia, U., Ghia, K. N., and Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411.

    Google Scholar 

  10. Gupta, M.M. (1991). High accuracy solutions of incompressible Navier-Stokes equations. J. Comput. Phys. 93, 343–359.

    Google Scholar 

  11. Goodrich, J. W., and Soh, W. Y. (1989). Time-dependent viscous incompressible Navier-Stokes equations: The finite difference galerkin formulation and streamfunction algorithms. J. Comput. Phys. 84, 207–241.

    Google Scholar 

  12. Gresho, P.M. (1992). Some interesting issues in incompressible fluid dynamics, both in the continuum and in numerical simulation. Adv. Appl. Mech. 28, 45–140.

    Google Scholar 

  13. Gupta, M. M., and Manohar, R. P. (1979). Boundary approximations and accuracy in viscous flow computations. J. Comput. Phys. 31, 265–288.

    Google Scholar 

  14. Hairer, E., Norsett, S. P., and Wanner, G. (1993). Solving Ordinary Differential Equations, Springer, Berlin-New York, 2nd ed.

    Google Scholar 

  15. Hou, T. Y., and Wetton, B. T. R. (1992). Convergence of a finite difference scheme for the Navier-Stokes equations using vorticity boundary conditions. SIAM J. Numer. Anal. 29, 615–639.

    Google Scholar 

  16. Huang, H., and Seymour, B. R. (1996). The no-slip boundary condition in finite difference approximations. Int. J. Numer. Methods Fluids 22, 713–729.

    Google Scholar 

  17. Huang, H., and Seymour, B. R. (2000). Finite difference solutions for incompressible flow problems with corner singularities. J. Sci. Comput. 15, 265–292.

    Google Scholar 

  18. Li, M., Tang, T., and Fornberg, B. (1995). A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 20, 1137–1151.

    Google Scholar 

  19. Roache, P. J. (1972). Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, New Mexico.

    Google Scholar 

  20. Saad, Y., and Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869.

    Google Scholar 

  21. Strikwerda, J. C. (1997). High-order-accurate schemes for incompressible viscous flow. Int. J. Numer. Methods Fluids 24, 715–734.

    Google Scholar 

  22. Thom, A. (1933). The flow past circular cylinder at low speeds. Proc. Roy. Soc. London (Ser. A) 141, 651–666.

    Google Scholar 

  23. Woods, L. C. (1954). A note on the numerical solution of fourth order differential equa-tions. Aeronaut. Quart. 5, 176–184.

    Google Scholar 

  24. Wu, J. Z., and Wu, J.M. (1996). Vorticity dynamics on boundaries. Adv. Appl. Mech. 32, 119–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Tang, T. A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows. Journal of Scientific Computing 16, 29–45 (2001). https://doi.org/10.1023/A:1011146429794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011146429794

Navigation