Skip to main content
Log in

Thermodynamic Model for the Solubility of TcO2· xH2O(am) in the Aqueous Tc(IV) – Na+ – Cl – H+ – OH – H2O System

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubility studies of TcO2· xH2O(am) have been conducted as a function of H+ concentration from 1 × 10− 5 to 6 M HCl and as a function of chloride concentration from 1 × 10− 3 to 5 M NaCl. These experiments were conducted under carefully controlled reducing conditions such that the preponderance of Tc present in solution is in the reduced oxidation state and was determined to be Tc(IV) by XANES analysis. The aqueous species and solid phases were characterized using a combination of techniques including thermodynamic analyses of solubility data, XRD, and XANES, EXAFS, and UV-vis spectroscopies. Chloride was found to significantly affect Tc(IV) concentrations through (1) the formation of Tc(IV) chloro complexes [i.e., TcCl4(aq) and TcCl6 2 −] and a stable compound [data suggests this compound to be TcCl4(am)] in highly acidic and relatively concentrated chloride solutions, and (2) its interactions with the positively charged hydrolyzed Tc(IV) species in solutions of relatively low acidity and high chloride concentrations. A thermodynamic model was developed that included hitherto unavailable chemical potentials of the Tc(IV)–chloro species and Pitzer ion-interaction parameters for Tc(IV) hydrolyzed species with bulk electrolyte ions used in this study. The thermodynamic model presented in this paper is consistent with the extensive data reported in this study and with the reliable literature data and is applicable to a wide range of H+ and Cl concentrations and ionic strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. H. Schulte and P. Scoppa, Sci. Total Environ. 64, 163(1987).

    Google Scholar 

  2. M. J. Rudin, C. Stanton, R. G. Patterson, and R. S. Garcia, National Low-Level Waste Management Program Radionuclide Report Series, Vol. 2, Technetium-99 Idaho National Engineering Laboratory Technical Report DOE/LLW-118 (Idaho Falls, ID, 1992).

    Google Scholar 

  3. J. A. Rard, M. H. Rand, G. Anderegg, and H. Wanner, in Chemical Thermodynamics of Technetium, M. C. A. Sandino and E. Osthols, Eds., Chemical Thermodynamics 3 (Elsevier, New York, 1999), 544p.

    Google Scholar 

  4. R. E. Meyer, W. D. Arnold, and F. I. Case, Oak Ridge National Laboratories Technical Report ORNL-6503 (Oak Ridge, TN, 1986).

    Google Scholar 

  5. R. E. Meyer, W. D. Arnold, F. I. Case, and G. D. O'Kelley, Radiochim. Acta 55, 11(1991).

    Google Scholar 

  6. M. Lefort, Bull. Soc. Chim. Fr. pp. 882-884 (1963).

  7. A. C. Vikis, F. Garisto, R. J. Lemire, J. Paquette, N. Sagert, P. P. S. Saluja, S. Sunder, and P. Taylor, Proc. Intern. Symp. Uranium Electricity, pp. 2-18 (Saskatoon, SK, 1988).

    Google Scholar 

  8. B. Gorsky and H. Koch, J. Inorg. Nuc. Chem. 31, 3565(1969).

    Google Scholar 

  9. K. Ben Said, M. Fattahi, Cl. Musikas, R. Revel, and J. Ch. Abbé, Radiochim. Acta 88, 567(2000).

    Google Scholar 

  10. D. Rai, A. R. Felmy, S. P. Juracich, and L. Rao, Sandia National Laboratories Technical Report SAND94-1949 (Albuquerque, NM, 1995).

    Google Scholar 

  11. D. Rai, A. R. Felmy, and J. L. Ryan, Inorg. Chem. 29, 260, (1990).

    Google Scholar 

  12. E. Ianovici, M. Kosinski, P. Lerch, and A. G. Maddock, J. Radioanal. Chem. 64, 315(1981).

    Google Scholar 

  13. Y. Kanchiku, Bull. Chem. Soc. Jpn. 42, 2831(1969).

    Google Scholar 

  14. W. H. McMaster, N. Kerr del Grande, J. H. Mallett, and J. H. Hubbell, Compilation of X-ray Cross Sections (University of California, Livermore, CA, 1969).

    Google Scholar 

  15. A. L. Ankudinov, Ph. D. Thesis, University of Washington, Seattle, WA (1996).

  16. J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Amer. Chem. Soc. 113, 5135-5140 (1991).

    Google Scholar 

  17. A. Magneli, Acta Crystallogr. 9, 1038(1956).

    Google Scholar 

  18. K. Krebs, Z. Anorgan. Allegem. Chem. 380, 146(1971).

    Google Scholar 

  19. P. W. Frais and J. L. Locke, Can. J. Chem. 50, 1811(1972).

    Google Scholar 

  20. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300(1973).

    Google Scholar 

  21. K. S. Pitzer, in Ion Interaction Approach: Theory and Data Correlation Activity; K. S. Pitzer, Ed. Activity Coefficients in Electrolyte Solutions, 2nd edn. (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  22. A. R. Felmy and J. H. Weare, Geochim. Cosmochim. Acta 50, 2771(1986).

    Google Scholar 

  23. A. R. Felmy, D. Rai, J. A. Schramke, and J. Ryan, Radiochim. Acta 48, 29(1989).

    Google Scholar 

  24. S. M. Sterner, A. R. Felmy, J. R. Rustad, and K. S. Pitzer, Battelle Technical Report PNWD-SA-4436. (Richland, WA, 1997).

    Google Scholar 

  25. I. Almahamid, J. C. Bryan, J. J. Bucher, A. K. Burrell, N. M. Edelstein, E. A. Hudson, N. Kaltsoyannis, W. W. Lukens, D. K. Shuh, H. Nitsche, and T. Reich, Inorg. Chem. 34, 193(1995).

    Google Scholar 

  26. W. W. Lukens, Jr., J. J. Bucher, N. M. Edelstein, and D. K. Shuh, Environ. Sci. Technol. 36, 1124(2002).

    Google Scholar 

  27. C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723(1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, N.J., Xia, Y., Rai, D. et al. Thermodynamic Model for the Solubility of TcO2· xH2O(am) in the Aqueous Tc(IV) – Na+ – Cl – H+ – OH – H2O System. Journal of Solution Chemistry 33, 199–226 (2004). https://doi.org/10.1023/B:JOSL.0000030285.11512.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000030285.11512.1f

Navigation