Skip to main content
Log in

The influence of flow impoundment and river regulation on the distribution of riverine macroinvertebrates at Mammoth Cave National Park, Kentucky, U.S.A.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of impoundment by a low-head dam and hypolimnetic release from a reservoir on benthic macroinvertebrate assemblages were studied in two lowland rivers. The first river (Green River) was initially divided into three zones (impounded, transitional, erosional) according to hydrological characteristics. The entire reach of the second river (Nolin River) was a regime unit. Only the Green River erosional zone was free-flowing with a linear sequence of riffle-run-pool reaches. A detrended correspondence analysis showed that the Green River impounded and transitional zones were taxonomically indistinguishable while the Green River erosional zone and the Nolin River were each distinct. A canonical correspondence analysis revealed that higher surface velocity, higher summer water temperatures and more turbid conditions, and lower water temperatures were contributing parameters to the separation of the Green River erosional zone, Green River transitional/impounded zones, and the Nolin River, respectively, in ordination space. A series of one-way ANOVA’s testing for differences of macroinvertebrates assemblages between the three Green River zones according to five metrics showed that the Green River erosional zone demonstrated significantly higher values and the transitional and impounded zones were ecologically similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed. EPA 841-B-99-002. United States Environmental Protection Agency, Office of Research and Development, Washington, D.C.

    Google Scholar 

  • Born, S. M., K. D. Genskow, T. L. Filbert, N. Hernandez-Mora, M. L. Keefer & K. A. White, 1998. Socioeconomic and institutional dimensions of dam removals: the Wisconsin experience. Environmental Management 22: 359–370.

    Article  PubMed  Google Scholar 

  • Casper, A. F., J. H. Thorp, S. P. Davies & D. L. Courtenmanch, 2001. Initial response of benthic primary consumers to dam removal on the Kennebec River, Maine. Bulletin of the North American Benthological Society 18: 173.

    Google Scholar 

  • Charles, J. R., 1964. Effects of oilfields brines. Proceedings of the Annual Conference of the Southeastern Association of the Game and Fish Commission 18: 1–59.

    Google Scholar 

  • Ciborowski, J. J. H. & D. A. Craig, 1989. Factors influencing dispersion of larval black flies (Diptera: Simuliidae): effects of current velocity and food concentration. Canadian Journal of Fisheries and Aquatic Sciences 46: 1329–1341.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake & E. S. G. Schreiber, 1993. Spatial variation in the distribution of stream invertebrates: implications of patchiness for models of community organization. Freshwater Biology 30: 119–132.

    Google Scholar 

  • Fairchild, M. P. & J. R. Holomuzki, 2002. Spatial variability and assemblage structure of stream hydropsychid caddisflies. Journal of the North American Benthological Society 21: 576–588.

    Google Scholar 

  • Federal Register, 1980. Department of the Interior, Fish andWildlife Service, Endangered and Threatened Wildlife and Plants; Proposed Endangered Status and Critical Habitats for the Kentucky Cave Shrimp 45: 68975–68978.

    Google Scholar 

  • Forman, R. T. T. & M. Gordon, 1986. Landscape Ecology. Wiley and Sons, New York: 640 pp.

    Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Google Scholar 

  • Gregory, S., H. Li & J. Li, 2002. The conceptual basis for ecological responses to dam removal. BioScience 52: 713–723.

    Google Scholar 

  • Hart, D. D., K. L. Bushaw-Newton, S. Carney, D. F. Charles, C. M. Gatenby, R. Horwitz, D. A. Kreeger, T. Nightengale, P. F. Overbeck, J. Perillo, L. Saunders & R. L. Thomas, 2001.Manatawny Creek dam removal: species and community characteristics. Bulletin of the North American Benthological Society 18: 172.

    Google Scholar 

  • Hart, D. D., T. E. Johnson, K. L. Bushaw-Newton, R. J. Horwitz, A. T. Bednarek, D. F. Charles, D. A. Kreeger & D. J. Velinsky, 2002. Dam removal: challenges and opportunities for ecological research and river restoration. BioScience 52: 669–681.

    Google Scholar 

  • Holsinger, J. R. & A. T. Leitheuser, 1982. Ecological analysis of the Kentucky Cave Shrimp, Palaemonias ganteri Hay, at Mammoth Cave National Park (Phase II). Norfolk, Virginia: Old Dominion University Research Foundation, U.S. Dept of the Interior, National Park Service Contract Number CX-5000-1-1037, 64 pp.

    Google Scholar 

  • Johnson, Z. B., A. K. Riggs & J. H. Kennedy, 1998. Microdistribution and secondary production of Cyrnellus fraternus (Trichoptera: Polycentropodidae) from snag habitats in the Elm Fork of the Trinity River, Texas. Annals of the Entomological Society of America 91: 641–646.

    Google Scholar 

  • Kalff, J., 2002. Limnology. Prentice-Hall, Inc., Upper Saddle River, New Jersey, 591 pp.

    Google Scholar 

  • Kanehl, P. D., J. Lyons & J. E. Nelson, 1997. Changes in the habitat and fish community of the Milwaukee River, Wisconsin, following removal of the Woolen Mills Dam. North American Journal of Fisheries Management 17: 387–400.

    Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Google Scholar 

  • Layzer, J. B., 2002. Status of the freshwater mussel fauna in the Green River within Mammoth Cave National Park-a preliminary assessment. In, Proceedings of Mammoth Cave National Park’s Ninth Science Conference: 51-53.

  • Mackay, R. J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins (eds), 1996. An Introduction to the Aquatic Insects of North America, 3rd edition. Kendall-Hunt Publishing Company, Dubuque, Iowa, 862 pp.

    Google Scholar 

  • Omernik, J. M., 1987. Ecoregions of the conterminous United States. Map (scale 1:7,500,000). Annals of the Association of American Geographers 77: 118–125.

    Google Scholar 

  • Petts, G. E., 1984. Impounded Rivers: Perspectives for Ecological Management. J. Wiley and Sons, New York, 344 pp.

    Google Scholar 

  • Poff, N. L., 1992. Why disturbances can be predictable: a perspective on the definition of disturbance in streams. Journal of the North American Benthological Society 11: 86–92.

    Google Scholar 

  • Poff, N. L. & D. D. Hart, 2002. How dams vary and why it matters for the emerging science of dam removal. BioScience 52: 659–668.

    Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, & J. C. Stromberg, 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.

    Google Scholar 

  • Pollard, A. I. & T. Reed-Andersen, 2001. Benthic invertebrate community change following dam removal in a small Wisconsin stream. Bulletin of the North American Benthological Society 18: 173.

    Google Scholar 

  • Power, M. E., A. Sun, M. Parker, W. E. Dietrich & J. T. Wooton, 1995. Hydraulic food-chain models: an approach to the study of food-web dynamics in large rivers. BioScience 45: 159–167.

    Google Scholar 

  • Quinlan, J. F. & J. A. Ray, 1981. Groundwater basins in the Mammoth Cave Region, Kentucky, showing springs, major caves, flow routes, and potentiometric surface. Friends of the Karst, Occasional Publication No. 1, Scale 1:138,000.

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.

    Google Scholar 

  • Richardson, J. R. & R. J. Mackay, 1991. Lake outlets and the distribution of filter feeders: an assessment of hypotheses. Oikos 62: 370–380.

    Google Scholar 

  • Sousa, W. P., 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353–391.

    Google Scholar 

  • Stanley, E. H., M. W. Doyle & D. W. Marshall, 2002. Short-terms changes in channel form and macroinvertebrate communities following low-head dam removal. Journal of the North American Benthological Society 21: 172–187.

    Google Scholar 

  • Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • Townsend, C. R., 1996. Concepts in river ecology: pattern and process in the catchment hierarchy. Archiv für Hydrobiologie Supplement 113: 3–21.

    Google Scholar 

  • Turner, M. G., 1987. Landscape heterogeneity and disturbance. Ecological Studies 64. Springer-Verlag, New York: 239 pp.

    Google Scholar 

  • U. S. Army Corps of Engineers, 1981.Water resources development in Kentucky, 1981. U.S. Army Corps of Engineers, Louisville District, Louisville, Kentucky.

    Google Scholar 

  • U. S. Army Corps of Engineers, 2001. Green River Locks and Dams 3, 4, 5, and 6 and Barren River Lock and Dam 1 Disposition Study, Louisville District, Louisville, Kentucky.

  • U. S. Fish and Wildlife Service, 1992. Endangered and Threatened Species of the Southeastern United States (The Red Book), Kentucky Cave Shrimp, Palaemonis ganteri.

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science Publishers Inc., Ann Arbor, Michigan: 29–42

    Google Scholar 

  • White, P. S. & S. T. A. Pickett, 1985. Natural disturbance and patch dynamics: An introduction. In Pickett, S. T. A. & P. S. White (eds), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York: 3–9.

    Google Scholar 

  • Wotton, R. S., 1992. Feeding by blackfly larvae (Diptera: Simuliidae) forming dense aggregations at lake outlets. Freshwater Biology 27: 139–149.

    Google Scholar 

  • Zhang, Y., B. Malmqvist & G. Englund, 1998. Ecological processes affecting community structure of blackfly larvae in regulated and unregulated rivers: a regional study. Journal of Applied Ecology 35: 673–686.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grubbs, S., Taylor, J. The influence of flow impoundment and river regulation on the distribution of riverine macroinvertebrates at Mammoth Cave National Park, Kentucky, U.S.A.. Hydrobiologia 520, 19–28 (2004). https://doi.org/10.1023/B:HYDR.0000027722.23374.dc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000027722.23374.dc

Navigation