Skip to main content
Log in

Gromov's Centralizer Theorem

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study the properties of rigid geometric structures and their relation with those of finite type. The main result proves that for a noncompact simple Lie group G acting analytically on a manifold M preserving a finite volume and either a connection or a geometric structure of finite type there is a nontrivial space of globally defined Killing vector fields on the universal cover \(\tilde M\) that centralize the action of G. Several appplications of this result are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amores, A. M.: Vector fields of a finite type G-structure, J. Differential Geom. 14 (1979), 1–6.

    Google Scholar 

  2. Candel, A. and Quiroga-Barranco, R.: Connection preserving actions are topologically engaging, to appear in Bol. Soc. Mat. Mexicana.

  3. D'Ambra, G. and Gromov, M.: Lectures on transformation groups: geometry and dynamics, In: Surveys in Differential Geometry (Cambridge, Mass., 1990), Lehigh University, Bethlehem, Penn., 1991, pp. 19–111.

    Google Scholar 

  4. Feres, R.: Rigid geometric structures and actions of semisimple Lie groups, Preprint.

  5. Gromov, M.: Rigid transformations groups, In: Géométrie différentielle (Paris, 1986), Travaux en cours, 33, Hermann, Paris, 1988, pp. 65–139.

    Google Scholar 

  6. Guillemin, V. and Sternberg, S.: Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc. 64 (1966).

  7. Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, vol. 1, Wiley, New York, 1963.

    Google Scholar 

  8. Kobayashi, S.: Transformation Groups in Differential Geometry, Reprint of the 1972 edition. Classics in Math., Springer-Verlag, Berlin, 1995.

    Google Scholar 

  9. Kolá ř, I., Michor, P. and Slovák, J.: Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  10. Narasimhan, R.: Introduction to the Theory of Analytic Spaces, Lecture Notes in Math. 25, Springer-Verlag, Berlin, 1966.

    Google Scholar 

  11. Nomizu, K.: On local and global existence of Killing vector fields, Ann. of Math. 72 (1960), 105–120.

    Google Scholar 

  12. Patterson, S.: The limit set of a Fuchsian group, Acta Math. 136 (1976), 241–273.

    Google Scholar 

  13. Spatzier, R. and Zimmer, R.: Fundamental groups of negatively curved manifolds and actions of semisimple Lie groups, Topology 30 (1991), 591–601.

    Google Scholar 

  14. Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions, Publ. Math. I.H.E.S. 50 (1979), 171–202.

    Google Scholar 

  15. Zimmer, R.: Ergodic Theory and Semisimple Groups, Monogr. Math. 81, Birkhäuser-Verlag, Basel, 1984.

    Google Scholar 

  16. Zimmer, R.: On the automorphism group of a compact Lorentz manifold and other geometric manifolds, Invent. Math. 83 (1986), 411–424.

    Google Scholar 

  17. Zimmer, R.: Actions of semisimple groups and discrete subgroups, In: Proc. Internat. Congr. Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, R.I., 1987, pp. 1247–1258.

    Google Scholar 

  18. Zimmer, R.: Ergodic theory and the automorphism group of a G-structure, In: C. C. Moore (ed.), Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics, Springer-Verlag, New York, 1987, pp. 247–278.

    Google Scholar 

  19. Zimmer, R.: Representations of fundamental groups of manifolds with semisimple transformation group, J. Amer. Math. Soc. 2 (1989), 201–213.

    Google Scholar 

  20. Zimmer, R.: Superrigidity, Ratner's theorem and fundamental groups, Israel J. Math. 74 (1991), 199–207.

    Google Scholar 

  21. Zimmer, R.: Automorphism groups and fundamental groups of geometric manifolds, Proc. Sympos. Pure Math. 54(3) (1993), 693–710.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candel, A., Quiroga-Barranco, R. Gromov's Centralizer Theorem. Geometriae Dedicata 100, 123–155 (2003). https://doi.org/10.1023/A:1025892501271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025892501271

Navigation