Skip to main content
Log in

Chironomid responses to long-term metal contamination: a paleolimnological study in two bays of Lake Imandra, Kola Peninsula, northern Russia

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Short sediment cores from two gulfs, Monche Bay and Kunchast Bay, of Lake Imandra (Kola Peninsula, northern Russia) were analysed for sediment chemistry and chironomid head capsule remains. Monche Bay has been receiving metals from the Severonikel copper-nickel smelter since the late 1930's. Kunchast Bay was selected in the remotest lake basin as an internal reference site. There were no pronounced changes in the chironomid assemblages with the beginning of slight metal contamination of Kunchast Bay. Based on the reconstructed environmental variables and chironomid assemblages, three developmental stages were distinguished from the chironomid fauna history of Monche Bay: (1) A natural development stage; (2) the early warning stage; and (3) the developing crises stage. During the first period, the changes in the chironomid fauna reflect an anthropogenically undisturbed assemblage, with Micropsectra insignilobus dominating (17–23%). The changes during the second period reflect the initial phase of anthropogenic succession associated with the beginning of metal pollution. The main species showed opposite distributional patterns in this period: the abundance of M. insignilobus decreased, whereas the abundance of Chironomus, Procladius and Sergentia coracina increased. At the same time, maximal numbers were attained for species richness (45) and Shannon-Weaver diversity (4.85) of chironomid assemblages, and the highest head capsule concentration (75 head capsules · g−1 of dry sediment). The third period was characterized by a major shift in the faunal assemblages, from M. insignilobus to other dominant species, including Chironomus (22–44%), Procladius (10–30 %) and S. coracina (15–18%). Besides fauna changes, assemblages of the third period are distinguished by the occurrence of mouthpart deformities in Chironomus head capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas Murmanskoi Oblasti 1971. Glavnoe Upravlenie Geodezii i Kartografi pri Sovete Ministrov SSSR, Moscow. 33 pp. (in Russian).

  • Brännvall M.-L., Bindler R., Emteryd O. and Renberg I. 2001. Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. J. Paleolim. 25: 421-435.

    Google Scholar 

  • Brodersen K.P. and Lindegaard C. 1999. Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshwat. Biol. 42: 29-44.

    Google Scholar 

  • Brodin Y.-W. 1986. The postglacial history of Lake Flarken, Southern Sweden, interpreted from subfossil insect remains. Int. Revue ges. Hydrobiol. 71: 371-432.

    Google Scholar 

  • Brooks S.J., Bennion H. and Birks H.I.B. 2001. Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshwat. Biol. 46: 513-533.

    Google Scholar 

  • Charbonneau P., Hare L. and Carignan R. 1997. Use of X-ray images and a contrasting agent to study the behavior of animals in soft sediments. Limnol. Oceanogr. 42: 1823-1828.

    Google Scholar 

  • Contreras-Lichtenberg R. 1986. Revision der in der Westpaläarktis verbreiteten Arten des Genus Dicrotendipes Kieffer, 1913 (Diptera, Nematocera, Chironomidae). Ann. Naturhist. Mus. Wien. 88: 663-726.

    Google Scholar 

  • Cranston P.S. 1982. A key to the larvae of the British Orthocladiinae (Chironomidae). Freshwat. Biol. Assoc., Sci. Publ. 45: 1-152.

    Google Scholar 

  • Dauvalter V. 1994. Heavy metals in lake sediments of the Kola Peninsula, Russia. Sci. Tot. Envir. 158: 51-61.

    Google Scholar 

  • Dermott R.M. 1991. Deformities in larval Procladius spp. and dominant Chironomini from the St. Clair River. Hydrobiologia 219: 171-185.

    Google Scholar 

  • Diggins T.P. and Stewart K.M. 1998. Chironomid deformities, benthic community composition, and trace elements in the Buffalo River (New York) Area of Concern. J. N. Am. Benthol. Soc. 17: 311-323.

    Google Scholar 

  • Dusoge K. 1980. The occurrence and role of the predatory larvae of Procladius Skuse (Chironomidae, Diptera) in the benthos of Lake Sniardwy. Ekol. pol. 28: 155-186.

    Google Scholar 

  • Ek A.S. and Renberg I. 2001. Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, central Sweden. J. Paleolim. 26: 89-107.

    Google Scholar 

  • Francis D.R. 2001. A record of hypolimnetic oxygen conditions in a temperate multidepression lake from chemical evidence and chironomid remains. J. Paleolim. 25: 351-365.

    Google Scholar 

  • Frumin G.T., Skakalsky B.G. and Drabkova V.G. 1995. The quality of surface-water and its pollution rates. In: Alimov A.F. (ed.), Ecological Situation in the North-Western and Northern Regions. Nauka, St. Petersburg, pp. 86-126 (in Russian).

    Google Scholar 

  • Grimm E.C. 1987. CONISS: A fortran program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comp. Geosci. 13: 13-35.

    Google Scholar 

  • Grimm E.C. 1991. TILIA and TILIAGRAPH Software. Illinois State Museum, Springfield, USA.

    Google Scholar 

  • Groenendijk D., Zenstra L.W.M. and Postma J.F. 1998. Fluctuating asymmetry and mentum gaps in populations of the midge Chironomus riparius (Diptera: Chironomidae) from a metalcontaminated river. Envir. Toxicol. Chem. 17: 1999-2005.

    Google Scholar 

  • Håkanson L. and Jansson M. 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin, Heidelberg, 316 pp.

    Google Scholar 

  • Hämäläinen H. 1999. Critical appraisal of the indexes of chironomid larval deformities and their use in bioindication. Ann. zool. fenn. 36: 179-186.

    Google Scholar 

  • Heiri O., Lotter A.F. and Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolim. 25: 101-110.

    Google Scholar 

  • Hellawell J.M. 1986. Biological Indicators of Freshwater Pollution and Environmental Management. Elsevier, London, 546 pp.

    Google Scholar 

  • Hofmann W. 1971. Zur Taxonomie und Palokologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch. Hydrobiol., Beih. Ergebn. Limnol. 6: 1-50.

    Google Scholar 

  • Hofmann W. 1991. Stratigraphy of Chironomidae (Insecta: Diptera) and Cladocera (Crustacea) in Holocene and Wurm sediments from Lac du Bouchet (Haute Loire, France). Documents du C.E.R.L.A.T. 2: 363-386.

    Google Scholar 

  • Ilyashuk B.P. 1994. Strukturno-funkcionalniye kharakteristiki soobschestv makrozoobentosa malykh raznotipnykh ozer Yugo-Zapada Karelii, Zoological Institute RAN, St. Petersburg Dis. kand. biol. nauk., 179 pp. (in Russian).

  • Ilyashuk B.P. and Ilyashuk E.A. 2001. Response of alpine chironomid communities (Lake Chuna, Kola Peninsula, north-western Russia) to atmospheric contamination. J. Paleolim. 25: 467-475.

    Google Scholar 

  • Izvekova E.I. 1980. Feeding. In: Winberg G.G. (ed.), Benthos of Uchinskoe Reservoir. Nauka, Moscow, pp. 72-101 (in Russian).

    Google Scholar 

  • Janssens de Bisthoven L., Timmermans K.R. and Ollevier F. 1992. The concentration of cadmium, lead, copper and zinc in Chironomus gr. thummi larvae (Diptera, Chironomidae) with deformed versus normal menta. Hydrobiologia 239: 141-149.

    Google Scholar 

  • Johnson R.K., Wiederholm T. and Rosenberg D.M. 1993. Fresh-water biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: Rosenberg D.M. and Resh V.H. (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York, London, pp. 40-125.

    Google Scholar 

  • Kozlov M.V. and Barcan V. 2000. Environmental contamination in the central part of the Kola Peninsula: history, documentation, and perception. Ambio 29: 512-517.

    Google Scholar 

  • Kryuchkov V.V. 1993. Environment of the central part of Kola Peninsula: relief, climate, soil, vegetation, emission sources. In: Kozlov M.V., Haukioja E. and Yarmishko V.T. (eds), Aerial Pollution in Kola Peninsula. Proc. Int.Workshop, St. Petersburg, April 14-16, 1992, Kola Science Centre, Apatity, pp. 12-15.

  • Leary R.F. and Allendorf F.W. 1989. Fluctuating asymmetry as an indicator of stress: Implications for conservation biology. Trends Ecol. Evol. 4: 214-217.

    Google Scholar 

  • Little J.L., Hall R.I., Quinlan R. and Smol J.P. 2000. Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparision of diatoms, chironomids, and historical records. Can. J. Fish. Aquat. Sci. 57: 333-341.

    Google Scholar 

  • Makarchenko E.A. and Makarchenko M.A. 1999. Chironomidae. Non-biting midges. In: Tsalolikhin S.J. (ed.), Key to Freshwater Invertebrates of Russia and Adjacent Lands.V. 4, Higher Insects. Diptera, St. Petersburg, pp. 210-857 (in Russian).

    Google Scholar 

  • Meriläinen J.J., Hynynen J., Palomäki A., Veijola H., Witick A., Mäntykoski K. et al. 2001. Pulp and paper mill pollution and subsequent ecosystem recovery of a large boreal lake in Finland: a palaeolimnological analysis. J. Paleolim. 26: 11-35.

    Google Scholar 

  • Pankratova V.Ya. 1970. Larvae and pupae of non-biting midges of the subfamily Orthocladiinae (Diptera, Chironomidae= Tendipedidae) of the USSR fauna. Opredeliteli Fauny SSSR 102: 1-343 (in Russian).

    Google Scholar 

  • Pankratova V.Ya. 1977. Larvae and pupae of non-biting midges of the subfamilies Podonominae and Tanypodinae (Diptera, Chironomidae=Tendipedidae) of the USSR fauna. Opredeliteli Fauny SSSR 112: 1-154 (in Russian).

    Google Scholar 

  • Pankratova V.Ya. 1983. Larvae and pupae of non-biting midges of the subfamily Chironominae (Diptera, Chironomidae= Tendipedidae) of the USSR fauna. Opredeliteli Fauny SSSR 134: 1-296 (in Russian).

    Google Scholar 

  • Pielou E.C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131-144.

    Google Scholar 

  • Pozniakov V.Y. 1993. The 'Severonikel' smelter complex: history of development. In: Kozlov M.V., Haukioja E. and Yarmishko V.T. (eds), Aerial Pollution in Kola Peninsula. Proc. Int.Workshop, St. Petersburg, April 14-16, 1992. Kola Science Centre, Apatiity, pp. 16-19.

  • Pozniakov V.Y. 1999. Severonikel: Historical Pages of the Severonikel Smelter. Publ. House 'Ore and Metals', Moscow, 432 pp. (in Russian).

  • Quinlan R. and Smol J.P. 2002. Regional assessment of long-term hypolimnetic oxygen changes in Ontario (Canada) shield lakes using subfossil chironomids. J. Paleolim. 27: 249-260.

    Google Scholar 

  • Rapport D.J., Regier H.A. and Hutchinson T.C. 1985. Ecosystem behaviour under stress. Am. Nat. 125: 617-640.

    Google Scholar 

  • Rapport D.J., Regier H.A. and Thorpe C. 1981. Diagnosis, prognosis and treatment of ecosystems under stress. In: Barrett G.W. and Rosenberg R. (eds), Stress Effects on Natural Ecosystems. John Wiley & Sons Ltd., New York, pp. 269-280.

    Google Scholar 

  • Sæther O.A. 1975. Nearctic and Palaearctic Heterotrissocladius (Diptera: Chironomidae). Bull. Fish. Res. Bd Can. 193: 1-67.

    Google Scholar 

  • Sæther O.A. 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65-74.

    Google Scholar 

  • Schmid P.E. 1993. A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers. Part I: Diamesinae, Prodiamesinae and Orthocladiinae. Wass. Abwass. Suppl. 3: 1-514.

    Google Scholar 

  • Schnell Ø.A. 1998. Guidelines for the identification of chironomid larvae in the MOLAR project. NIVA Report 3710-97.

  • Siver P.A. and Wozniak J.A. 2001. Lead analysis of sediment cores from seven Connecticut lakes. J. Paleolim. 26: 1-10.

    Google Scholar 

  • Skogheim O.K. 1979. Rapport fra Arungenprosjectet. Oslo, As-NLH 2, 7 pp.

  • Southwood T.R.E. 1971. Ecological Methods with Particular Reference to the Study of Insect Populations. Methuen & Co., London, 391 pp.

    Google Scholar 

  • Strelkov S.A., Evzerov V., Koshechkin B.I., Rubinraut G.S., Afanas'ev A.P., Lebedeva R.M. et al. 1976. Istoriya formirovaniya rel'efa i rykhlykh otlozheniy severo-vostochnoi chasti Baltiiskogo Shchita. Nauka, Leningrad, 164 pp. (in Russian).

    Google Scholar 

  • Vermeulen A.C., Liberloo G., Dumont P., Ollevier F. and Goddeeris B.R. 2000. Exposure of Chironomus riparius larvae (Diptera) to lead, mercury and ß-sitosterol: effects on mouthpart deformation and moulting. Chemosphere 41: 1581-1591.

    Google Scholar 

  • Vinogradov G.A. 2000. Processes of Ionic Regulation in Fresh-water Fishes and Invertebrates. Nauka, Moscow, 216 pp. (in Russian).

    Google Scholar 

  • Walker I.R. 1995. Chironomids as indicators of past environmental change. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman & Hall Ltd., London, pp. 405-422.

    Google Scholar 

  • Walker I.R. 2001. Midges: Chironomidae and related Diptera.In: Smol J.P., Birks H.J.B., Last W.M. (eds.), Tracking Environmental Change Using Lake Sediments.Vol. 4, Zoological Indicators. Kluwer Academic Publishers, Dordrecht, pp. 43-66.

    Google Scholar 

  • Warren L.A., Tessier A. and Hare L. 1998. Modelling cadmium accumulation by benthic invertebrates in situ: The relative contributions of sediment and overlying water reservoirs to organism cadmium concentrations. Limnol. Oceanogr. 43: 1442-1454.

    Google Scholar 

  • Warwick W.F. 1992. The effect of trophic/contaminant interactions on chironomid community structure and succession (Diptera: Chironomidae). Neth. J. Aquat. Ecol. 26: 563-575.

    Google Scholar 

  • Warwick W.F. and Tisdale N.A. 1988. Morphological deformities in Chironomus, Cryptochironomus, and Procladius larvae (Diptera: Chironomidae) from two differentially stressed sites in Tobin Lake, Saskatchewan. Can. J. Fish. Aquat. Sci. 45: 1123-1144.

    Google Scholar 

  • Wiederholm T. 1980. Use of benthos in lake monitoring. J. Wat. Pollut. Cont. Fed. 52: 537-547.

    Google Scholar 

  • Wiederholm T. (ed.) 1983. Chironomidae of the Holarctic Region, Keys and Diagnoses: Part 1-Larvae. Ent. Scand., Suppl. 19: 1-457.

  • Wiederholm T. 1984. Responses of aquatic insects to environmental pollution. In: Resh V.H. and Rosenberg D.M. (eds), The Ecology of Aquatic Insects. Praeger Pubs., London, pp. 508-557.

    Google Scholar 

  • Zherikhin V.V. and Rautian A.S. 1999. Crises in biological evolution. In: Kotlyakov V.M. (ed.), Anatomy of Crises. Nauka, Moscow, pp. 29-47 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyashuk, B., Ilyashuk, E. & Dauvalter, V. Chironomid responses to long-term metal contamination: a paleolimnological study in two bays of Lake Imandra, Kola Peninsula, northern Russia. Journal of Paleolimnology 30, 217–230 (2003). https://doi.org/10.1023/A:1025528605002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025528605002

Navigation