Skip to main content
Log in

Geometric Derivation of the Delaunay Variables and Geometric Phases

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We derive the classical Delaunay variables by finding a suitable symmetry action of the three torus T3 on the phase space of the Kepler problem, computing its associated momentum map and using the geometry associated with this structure. A central feature in this derivation is the identification of the mean anomaly as the angle variable for a symplectic S 1 action on the union of the non-degenerate elliptic Kepler orbits. This approach is geometrically more natural than traditional ones such as directly solving Hamilton–Jacobi equations, or employing the Lagrange bracket. As an application of the new derivation, we give a singularity free treatment of the averaged J 2-dynamics (the effect of the bulge of the Earth) in the Cartesian coordinates by making use of the fact that the averaged J 2-Hamiltonian is a collective Hamiltonian of the T3 momentum map. We also use this geometric structure to identify the drifts in satellite orbits due to the J 2 effect as geometric phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R. and Marsden, J. E.: 1978, Foundations of Mechanics, 2nd edn, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Arnold, V. I.: 1991, Dynamical Systems, Springer, New York, Vol. III.

    Google Scholar 

  • Born, M.: 1927, The Mechanics of the atom, G. Bells and Sons, Ltd, London.

    Google Scholar 

  • Broucke, R. A.: 1994, Numerical integration of periodic orbits in the main problem of artificial satellite theory, Celestial Mechanics and Dynamical Astronomy 58, 99-123.

    Google Scholar 

  • Brouwer, D. and Clemence, G. M.: 1961, Methods of Celestial Mechanics, Academic Press, New York.

    Google Scholar 

  • Chang, D. E., Chichka, D. F. and Marsden, J. E.: 2002, 'Lyapunov-based transfer between elliptic Keplerian orbits', Discrete Contin. Dyn. Syst. B 2, 57-67.

    Google Scholar 

  • Charlier, C. L.: 1927, Die Mechanik des Himmels, Bd.I, II,2nd edn, Walter de Gruyter, Berlin.

    Google Scholar 

  • Chobotov, V. A. (ed.): 1996, OrbitalMechanics, 2nd edn, AIAA Education Series, American Institute of Aeronautics and Astronautics, Inc., New York.

    Google Scholar 

  • Coffey, S. L., Depit, A. and Miller, B. R.: 1986, 'The critical inclination in artificial satellite theory', Cel. Mech., 39, 365-406.

    Google Scholar 

  • Cushman, R.: 1991, In: K. Jones et al. (eds), A Survey of Normalization Techniques Applied to Perturbed Keplerian Systems, Dynamics Reported, Springer, New York, Vol. 1.

    Google Scholar 

  • Cushman, R. H. and Bates, L. M.: 1997, Global Aspects of Classical Integrable Systems, Birkhüser. Boston.

    Google Scholar 

  • Delaunay, C.: 1860, Théorie du mouvement de la lune, Mem. 28 (1860); 29 (1867), Acad. Sci. France, Paris.

    Google Scholar 

  • Goldstein, H.: 1980, Classical Mechanics, 2nd edn, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Kovalevsky, J.: 1967, Introduction to Celestial Mechanics, Springer, New York.

    Google Scholar 

  • Marsden, J. E., Misiolek, G., Perlmutter, M. and Ratiu, T.: 1998, Symplectic reduction for semidirect products and central extensions, Diff. Geom. Appl. 9, 173-212.

    Google Scholar 

  • Marsden, J. E., Montgomery, R. and Ratiu, T. S.: 1990, Reduction, Symmetry and Phases in Mechanics, Vol. 436 of Memoirs of the AMS, American Mathematical Society, Providence, RI.

    Google Scholar 

  • Marsden, J. E. and Ratiu, T. S.: 1999, Introduction to Mechanics and Symmetry, 2nd edn, Springer, New York.

    Google Scholar 

  • Marsden, J. E., Ratiu, T. S. and Scheurle, J.: 2000, Reduction theory and the Lagrange-Routh equations, J. Math. Phys. 41, 3379-3429.

    Google Scholar 

  • Marsden, J. E. and Weinstein, A.: 1974, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5, 121-130.

    Google Scholar 

  • Naber, G. L.: 1997, Topology, Geometry, and Gauge Fields: Foundations, Springer, New York.

    Google Scholar 

  • Vinti, J. P.: 1998, Orbital and Celestial Mechanics, AIAA, Virginia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eui Chang, D., Marsden, J.E. Geometric Derivation of the Delaunay Variables and Geometric Phases. Celestial Mechanics and Dynamical Astronomy 86, 185–208 (2003). https://doi.org/10.1023/A:1024174702036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024174702036

Navigation