Skip to main content
Log in

Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain

  • Published:
Journal of Neurocytology

Abstract

Several lines of evidence underscore a possible role of voltage-gated Na+ channels (NaCH) in epilepsy. We compared the regional distribution of mRNAs coding for Na+ channel α subunit I, II and III in brains from control and kainate-treated rats using non-radioactive in situ hybridization with subtype-specific digoxigenin-labelled cRNA probes. Labelling intensity was evaluated by a densitometric analysis of digitized images. Heterogeneous distribution of the three Na+ channel mRNAs was demonstrated in brain from adult control rats, which confirmed previous studies. Subtype II mRNAs were shown to be abundant in cerebellum and hippocampus. Subtype I mRNAs were also detected in these areas. Subtype III mRNAs were absent in cerebellar cortex, but significantly expressed in neurons of the medulla oblongata and hippocampus. The three subtypes were differentially distributed in neocortical layers. Subtype II mRNAs were present in all of the layers, but mRNAs for subtypes I and III were concentrated in pyramidal cells of neocortex layers IV–V. During kainate-induced seizures, we observed an increase in Na+ channel II and III mRNA levels in hippocampus. In dentate gyrus, subtype III mRNAs increased 3 h after K A administration to a maximum at 6 h. At this latter time, a lower increase in NaCh III mRNAs was also recorded in areas CA1 and CA3. NaCh III overexpression in dentate gyrus persisted for at least 24 h. In the same area, NaCh II mRNAs were also increased with a peak 3 h after K A injection and a return to control levels by 24 h. No changes in NaCh I mR NAs were seen. The K A-induced up-regulation in NaCh mR NAs probably resulted in an increase in hippocampal neuronal excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, C. M. I., Ware, D. H., Lee, S. C., Patten, C. D., Ferrer-Montiel, A. V., Schinder, A. F. McPherson, J. D., Wagner-McPherson, C. B., Wasmuth, J. J., Evans, G. A. & Montal, M. (1992) Primary structure, chromosomal localization, and functional expression of a voltage-gated sodium channel from human brain. Proceedings of the National Academy of Science, USA 89, 8220–4.

    Google Scholar 

  • Akopian, A. N., Souslova, V., Sivilotti, L. & Wood, J. N. (1997) Structure and distribution of a broadly expressed atypical sodium channel. FEBS Letters 400, 183–7.

    PubMed  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403–10.

    Article  PubMed  Google Scholar 

  • Auld, V. J., Goldin, A. L., Krafte, D. S., Marshall, J., Dunn, J. M., Catterall, W. A., Lester, H. A., Davidson, N. & Dunn, R. J. (1988) A rat brain Na+ channel α subunit with novel gating properties. Neuron 1, 449–61.

    PubMed  Google Scholar 

  • Beckh, S., Noda, M., LÜbbert, H. & Numa, S. (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO Journal 8, 3611–16.

    PubMed  Google Scholar 

  • Ben-Ari, Y. (1985) Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403.

    PubMed  Google Scholar 

  • Black, J. A., Yokoyama, S., Higashida, H., Ransom, B. R. & Waxman, S. G. (1994) Sodium channel mRNAs I, II and III in the CNS: cell-specific expression. Molecular Brain Research 22, 275–89.

    PubMed  Google Scholar 

  • Brysch, W., Creutzfeldt, O. D., LÜno, K., Schlingensiepen, R. & Schlingensiepen, K.-H. (1991) Regional and temporal expression of sodium channel messenger RNAs in the rat brain during development. Experimental Brain Research 86, 562–7.

    Google Scholar 

  • Bugra, K., Pollard, H., Charton, G., Moreau, J., Ben-Ari, Y. & Khrestchatisky, M. (1994) aFGF, bFGF and flg mRNAs show distinct patterns of induction in the hippocampus following kainateinduced seizures. European Journal of Neuroscience 6, 58–66.

    PubMed  Google Scholar 

  • Catterall, W. A. (1987) Common modes of drug action on Na+ channels: local anesthetics, antiarrhythmics and anticonvulsivants. Trends in Pharmacological Science 8, 57–65.

    Google Scholar 

  • Catterall, W. A. (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiological Reviews 72, S15–S48.

    PubMed  Google Scholar 

  • Chong, J. A., Tapia-Ramirez, J., Kim, S., Toledoaral, J. J., Zheng, Y., Boutros, M. C., Altschuller, Y. M., Frohman, M. A., Kraner, S. D. & Mandel, G. (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–57.

    PubMed  Google Scholar 

  • Crill, W. E. (1996) Persistent sodium current in mammalian central neurons. Annual Review of Physiology 58, 349–62.

    PubMed  Google Scholar 

  • D'Arcangelo, G., Paradiso, K., Shepherd, D., Brehm, P., Halegoua, S. & Mandel, G. (1993) Neuronal growth factor regulation of two different sodium channel types through distinct signal transduction pathways. Journal of Cell Biology 122, 915–21.

    PubMed  Google Scholar 

  • Dargent, B., Paillart, C., Carlier, E., Alcaraz, G., Martin-Eauclaire, M.-F. & Couraud, F. (1994) Sodium channel internalization in developing neurons. Neuron 13, 683–90.

    PubMed  Google Scholar 

  • Dugich-Djordjevic, M. M., Tocco, G., Lapchak, P. A., Pasinetti, G. M., Najm, I., Baudry, M. & Hefti, F. (1992) Regionally specific and rapid increases in brain-derived neurotrophic factor messenger RNA in the adult rat brain following seizures induced by systemic administration of kainic acid. Neuroscience 47, 303–15.

    PubMed  Google Scholar 

  • Feldblum, S., Ackermann, R. F. & Tobin, A. J. (1990) Long-term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron 5, 361–71.

    PubMed  Google Scholar 

  • Franck, J. E., Kunkel, D. D., Baskin, D. G. & Schwartzkroin, P. A. (1988) Inhibition in kainate lesioned hyperexcitable hippocampi: physiologic, autoradiographic and immunocytochemical observations. Journal of Neuroscience 8, 1991–2002.

    PubMed  Google Scholar 

  • Furuyama, T., Morita, Y., Inagaki, S. & Takagi, H. (1993) Distribution of I, II and III subtypes of voltage-sensitive Na+ channel mRNA in the rat brain. Molecular Brain Research 17, 169–73.

    PubMed  Google Scholar 

  • Gall, C. & Isackson, P. J. (1989) Limbic seizures increase neuronal production of mRNA for nerve growth factor. Science 245, 758–61.

    PubMed  Google Scholar 

  • Gall, C., Sumikawa, K. & Lynch, G. (1990) Levels of mRNA for a putative kainate receptor are affected by seizures. Proceedings of the National Academy of Science, USA 87, 7643–7.

    Google Scholar 

  • Gastaldi, M., Bartolomei, F., Massacrier, A., Planells, R., Robaglia-Schlupp, A. & Cau, P. (1997) Increase in mRNAs encoding neonatal II and III sodium channel alpha isoforms during kainateinduced seizures in adult rat hippocampus. Molecular Brain Research 44, 179–90.

    PubMed  Google Scholar 

  • Gastaldi, M., Massacrier, A., Planells, R., Robaglia-Schlupp, A., Portal-Bartolomei, I., BourliÈre, M., Quilici, F., Fiteni, J., Mazzella, E. & Cau, P. (1995) Detection by in situ hybridization of hepatitis C virus positive and negative RNA strands using digoxigenin-labeled cRNA probes in human liver cells. Journal of Hepatology 23, 509–18.

    PubMed  Google Scholar 

  • Gautron, S., Dos Santos, G., Pinto-Henrique, D., Koulakoff, A., Gros, F. & Berwald-Netter, Y. (1992) The glial voltage-gated sodium channel: Cell-and tissue-specific mRNA expression. Proceedings of the National Academy of Science, USA 89, 7272–6.

    Google Scholar 

  • Gordon, D., Merrick, D., Auld, Y., Dunn, R., Goldin, A. L., Davidson, N. & Catterall, W. A. (1987) Tissue specific expression of the R I and R II sodium channels subtypes. Proceedings of the National Academy of Science, USA 84, 8682–8.

    Google Scholar 

  • Gustafson, T. A., Clevinger, E. C., O'Neill, T. J., Yarowsky, P. J. & Krueger, B. K. (1993) Mutually exclusive exon splicing of type III brain sodium channel a subunit RNA generates developmentally regulated isoforms in rat brain. Journal of Biological Chemistry 268, 18648–53.

    PubMed  Google Scholar 

  • Hille, B. (ed.) (1992) Structure and functions. In Ionic Channels of Excitable Membranes, pp. 423–44. Sunderland: Sinauer.

  • Isackson, P. J., Huntsman, M. M., Murray, K. D. & Gall, C. M. (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6, 937–48.

    PubMed  Google Scholar 

  • Iwahashi, Y., Furuyama, T., Inagaki, S., Morita, Y. & Takagi, H. (1994) Distinct regulation of sodium channel types I, II and III following nerve transection. Molecular Brain Research 22, 341–5.

    PubMed  Google Scholar 

  • Kamphuis, W., de Rijk, T. C., Talamini, L. M. & Lopes Da Silva, F. H. (1994) Rat hippocampal kindling induces changes in the glutamate receptor mRNA expression patterns in dentate granule neurons. European Journal of Neuroscience 6, 1119–27.

    PubMed  Google Scholar 

  • Kayano, T., Noda, M., Flockerzi, V., Takahashi, H. & Numa, S. (1988) Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Letters 228, 187–94.

    PubMed  Google Scholar 

  • Kiessling, M. & Gass, P. (1993) Immediate early gene expression in experimental epilepsy. Brain Pathology 3, 381–93.

    PubMed  Google Scholar 

  • Lara, A., Dargent, B., Julien, F., Alcaraz, G., Tricaud, N., Couraud, F. & Jover, E. (1996) Channel activators reduce the expression of sodium channel a-subunit mRNA in developing neurons. Molecular Brain Research 37, 116–24.

    PubMed  Google Scholar 

  • Lombardo, A. J., Kuzniecky, R., Powers, R. E. & Brown, G. B. (1996) Altered brain sodium channel transcript levels in human epilepsy. Molecular Brain Research 35, 84–90.

    PubMed  Google Scholar 

  • Mandel, G., Cooperman, S. S., Maue, R. A., Goodman, R. H. & Brehm, P. (1988) Selective induction of brain type II Na+ channels by nerve growth factor. Proceedings of the National Academy of Science, USA 85, 924–28.

    Google Scholar 

  • Maue, R. A., Kraner, S. D., Goodman, R. H. & Mandel, G. (1990) Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements. Neuron 4, 223–31.

    PubMed  Google Scholar 

  • McDonald, R. L. & Kelly, K. M. (1993) Antiepileptic drug mechanisms of action. Epilepsia 34(suppl. 5), S1–S8.

    Google Scholar 

  • Meier, C. L., Obenaus, A. & Dudek, F. E. (1992) Persistent hyperexcitability in isolated hippocampal CA1 of kainate-lesioned rats. Journal of Neurophysiology 68, 2120–7.

    PubMed  Google Scholar 

  • Mize, R. R., Holdfeder, R. N. & Nabors, L. B. (1988) Quantitative immunocytochemistry using an image analyser. I. Hardware evaluation, image processing and data analysis. Journal of Neuroscience Methods 26, 1–24.

    PubMed  Google Scholar 

  • Moorman, A. F. M., De Boer, P. A. J., Vermeulen, J. L. M. & Lamers, W. H. (1993) Practical aspects of radio-isotopic in situ hybridization on RNA. Histochemical Journal 25, 251–66.

    PubMed  Google Scholar 

  • Moorman, J. R., Kirsch, G. E., Vandongen, A. M. J., Joho, R. H. & Brown, A. M. (1990) Fast and slow gating of sodium channels encoded by a single mRNA. Neuron 4, 243–52.

    PubMed  Google Scholar 

  • Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. & Numa, S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320, 188–92.

    PubMed  Google Scholar 

  • Oh, Y., Black, J. A. & Waxman, S. G. (1994) The expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes. Molecular Brain Research 23, 57–65.

    PubMed  Google Scholar 

  • Paillart, C., Boudier, J.-L., Boudier, J.-A., Rochat, H., Couraud, F. & Dargent, B. (1996) Activity-induced internalization and rapid degradation of sodium channels in cultured fetal neurons. Journal of Cell Biology 134, 499–509.

    PubMed  Google Scholar 

  • Pennypacker, K. R., Walczack, D., Thai, L., Fannin, R., Mason, E., Douglass, J. & Hong, J. S. (1993) Kainate-induced changes in opioid peptide genes and AP-1 protein expression in the rat hippocampus. Journal of Neurochemistry 60, 204–11.

    PubMed  Google Scholar 

  • Pollard, H., HÉron, A., Moreau, J., Ben-Ari, Y. & Khrestchatisky, M. (1993) Alterations of the GluR-BAMPA receptor subunit Flip/Flop expression in kainate-induced epilepsy and ischemia. Neuroscience 57, 545–54.

    PubMed  Google Scholar 

  • Pratt, G. D., Kokaia, M., Bengzon, J., Kokaia, Z., Fritschy, J.-M., MÖhler, H. & Lindvall, O. (1993) Differential regulation of N-methyl-D-aspartate receptor subunit messenger RNAs in kindling-induced epileptogenesis. Neuroscience 57, 307–18.

    PubMed  Google Scholar 

  • Prince, D. (1993) Basic mechanisms of focal epileptogenesis. In Epileptogenic and Excitotoxic Mechanisms (edited by Avanzini, G., Fariello, R., Heinemann, U. & Mutani, R.) pp. 17–27. London: John Libbey.

    Google Scholar 

  • Ragsdale, D. S., Scheuer, T. & Catterall, W. A. (1991) Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in mammalian cell line, by local anaesthetic, antiarrythmic and anticonvulsant drugs. Molecular Pharmacology 40, 756–65.

    PubMed  Google Scholar 

  • Represa, A., Niquet, J., Polard, H., Khrestchatisky, M. & Ben-Ari, Y. (1994) From seizure to neo-synaptogenesis: intrinsic and extrinsic determinants of mossy fiber sprouting in the adult hippocampus. Hippocampus 4, 270–4.

    PubMed  Google Scholar 

  • Sarao, R., Gupta, S. K., Auld, V. J. & Dunn, R. J. (1991) Developmentally regulated alternative RNA splicing of rat brain sodium channel mRNAs. Nucleic Acids Research 19, 5673–9

    PubMed  Google Scholar 

  • Sashihara, S., Yanagihara, N., Izumi, F., Murai, Y. & Mita, T. (1994) Differential up-regulation of voltage-dependent Na+ channels induced by phenytoin in brains of genetically seizure-susceptible (EI) and control (ddY) mice. Neuroscience 62, 803–11.

    PubMed  Google Scholar 

  • Sashihara, S., Yanagihara, N., Kobayashi, H., Izumi, F., Tsuji, S., Murai, Y. & Mita, T. (1992) Overproduction of voltage-dependent Na+ channels in the developing brain of genetically seizure-susceptible EI mice. Neuroscience 48, 285–91.

    PubMed  Google Scholar 

  • Schaller, K. L., Krzemien, D. M., Yarowsky, P. J., Krueger, B. K. & Caldwell, J. H. (1995) A novel, abundant sodium channel expressed in neurons and glia. Journal of Neuroscience 15, 3231–42.

    PubMed  Google Scholar 

  • Schmidt, J. W. & Catterall, W. A. (1986) Biosynthesis and processing of the a subunit of the voltagesensitive sodium channel in rat brain neurons. Cell 46, 437–45.

    PubMed  Google Scholar 

  • Schmitz, G. G., Walter, T., Seibl, R. & Kessler, C. (1991) Nonradioactive labeling of nucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Analytical Biochemistry 192, 222–31.

    PubMed  Google Scholar 

  • Schoenherr, C. J. & Anderson, D. J. (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–3.

    PubMed  Google Scholar 

  • Sperk, G. (1994) Kainic acid seizures in the rat. Progress in Neurobiology 42, 1–32.

    PubMed  Google Scholar 

  • Sperk, G., Lassmann, H., Baran, H., Kish, S. J., Seitelberger, F. & Hornykiewicz, O. (1983) Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10, 1301–15.

    PubMed  Google Scholar 

  • Suzuki, H., Beckh, S., Kubo, H., Yahagi, N., Ishida, H., Kayano, T., Noda, M. & Numa, S. (1988) Functional expression of cloned cDNA encoding sodium channel III. FEBS Letters 228, 195–200.

    PubMed  Google Scholar 

  • Tian, L. M., Otoom, S. & Alkadhi, K. A. (1995) Endogenous bursting due to altered sodium channel function in rat hippocampal CA1 neurons. Brain Research 680, 164–72.

    PubMed  Google Scholar 

  • Tsaur, M. L., Sheng, M., Lowenstein, D. H., Jan, Y. N. & Jan, L. Y. (1992) Differential expression of K+ channel mRNAs in the rat brain and down regulation in the hippocampus following seizures. Neuron 8, 1055–67.

    PubMed  Google Scholar 

  • Virginio, C. & Cherubini, E. (1995) Functional expression of voltage dependent sodium channels in Xenopus oocytes injected with mRNA from neonatal or adult rat brain. Developmental Brain Research 87, 153–9.

    PubMed  Google Scholar 

  • Westenbroek, R. E., Merrick, D. K. & Catterall, W. A. (1989) Differential subcellular localisation of the R I and R II Na+ channel subtypes in central neurons. Neuron 3, 695–704.

    PubMed  Google Scholar 

  • Westenbroek, R. E., Noebels, J. L. & Catterall, W. A. (1992) Elevated expression of type II Na+ channels in hypomyelinated axons of shiverer mouse brain. Journal of Neuroscience 12, 2259–67.

    PubMed  Google Scholar 

  • Wisden, W. & Seeburg, P. H. (1993) A complex mosaic of high-affinity kainate receptors in rat brain. Journal of Neuroscience 13, 3582–98.

    PubMed  Google Scholar 

  • Xie, X., Lancaster, B., Peakman, T. & Garthwaite, J. (1995) Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na+ channels and with native Na+ channels in rat hippocampal neurons. European Journal of Physiology 430, 437–46.

    PubMed  Google Scholar 

  • Yarowsky, P. J., Krueger, B. K., Olson, C. E., Clevinger, E. C. & Koos, R. D. (1991) Brain and heart sodium channel subtype mRNA expression in rat cerebral cortex. Proceedings of the National Academy of Science, USA 88, 9453–7.

    Google Scholar 

  • Zur, K. B., Oh, Y., Waxman, S. G. & Black, J. A. (1995) Differential upregulation of sodium channel α-and β1-subunit mRNAs in cultured embryonic DRG neurons following exposure to NGF. Molecular Brain Research 30, 97–103.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolomei, F., Gastaldi, M., Massacrier, A. et al. Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J Neurocytol 26, 667–678 (1997). https://doi.org/10.1023/A:1018549928277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018549928277

Keywords

Navigation