Skip to main content
Log in

Microalgal mass culture systems and methods: Their limitation and potential

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cultivation of microalgae using natural and man-made open-ponds istechnologically simple, but not necessary cheap due to the high downstream processing cost. Products of microalgae cultured in open-pondscould only be marketed as value-added health food supplements, specialityfeed and reagents for research. The need to achieve higher productivityand to maintain monoculture of algae led to the development of enclosedtubular and flat plate photobioreactors. Despite higher biomassconcentration and better control of culture parameters, data accumulatedin the past 25 years have shown that the illuminated areal, volumetricproductivity and cost of production in these enclosed photobioreactors arenot better than those achievable in open-pond cultures. The technicaldifficulty in sterilizing these photobioreactors has hindered their applicationfor the production of high value pharmaceutical products. The alternativeof cultivating microalgae in heterotrophic mode in sterilizable fermentorshas achieved some commercial success. The maximum specific growth ratesof heterotrophic algal cultures are in general slower than those measured inphotosynthetic cultures. The biomass productivity of heterotrophic algalcultures has yet to achieve a level that is comparable to industrialproduction of yeast and other heterotrophic microrganisms. Mixotrophiccultivation of microalage takes advantage of their ability to utilise organicenergy and carbon substrates and perform photosynthesis concurrently. Moreover, production of some algal metabolites is light regulated. Futuredesign of sterilizable bioreactors for mixotrophic cultivation of microalgaemay have to consider the organic substrate the main source of energy andlight the supplemental source of energy, a change in mindset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson B, Mavituna F (1983) Biochemical Engineering and Biotechnology Handbook. MacMillan, Surrey: 1117 pp.

    Google Scholar 

  • Barclay WR, Maeger KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. appl. Phycol. 6: 123-129.

    Google Scholar 

  • Becker EW (1994) Microalgae: Biotechnology and Microbiology. Cambridge University, Cambridge: 293 pp.

    Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and process-Matching science and economics. J. appl. Phycol. 4: 267-279.

    Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: Opportunities and constrains. J. appl. Phycol. 9: 393-401.

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: Ponds, tanks, tubes and fermentors. J. Biotechnol. 70: 313-321.

    Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: A review of systems for outdoor mass culture. J. appl. Phycol. 5: 593-604.

    Google Scholar 

  • Chaumont D, Thepenier C, Gudin C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum-From laboratory to pilot plant. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, pp. 199-208.

    Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. appl. Phycol. 3: 203-209.

    Google Scholar 

  • Chen F, Johns MR (1996) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem. 31: 601-604.

    Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol. 20: 221-224.

    Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol. Lett. 18: 603-608.

    Google Scholar 

  • Cohen Z (1999) Porphyridium cruentum. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.

    Google Scholar 

  • Cook JR, Heinrich B (1965) Glucose vs acetate metabolism in Euglena. J. Protozool. 12: 581-583

    Google Scholar 

  • Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a microalgal mollusc feed. Bioresource Technol. 38: 245-250.

    Google Scholar 

  • Doucha J, Livansky K (1995) Novel outdoor thin-layer high density microalgal culture system: Productivity and operational parameters. Algol. Stud. (Trebon) 76: 129-147.

    Google Scholar 

  • Droop MR (1955) Carotogenesis in Haematococcus pluvialis. Nature, London 175: 42.

    Google Scholar 

  • Droop MR (1974) Heterotrophy of carbon. In Stewart WDP (ed.), Algal Physiology and Biochemistry. Blackwell, Oxford, pp. 530-559.

    Google Scholar 

  • Edmund T, Lee Y, Bazin MJ (1990) A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures. New Phytol. 116: 331-335.

    Google Scholar 

  • Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis heterotrophic fast growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol. 18:199-205.

    Google Scholar 

  • Fernandez AFG, Camacho GF, Perez SJA, Sevilla FJM, Grima ME (1998) Modelling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter and solar irradiance. Biotechnol. Bioengng. 58: 605-616.

    Google Scholar 

  • Garcia MCC, Sevilla JMF, Fernandez FGA, Grima EM, Camacho FG (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J. appl. Phycol. 12: 239-248.

    Google Scholar 

  • Gladue RM (1991) Heterotrophic microalgae production: Potential for application to aquaculture feeds. In Fulks W, Main KL (eds), Rotifer and Microalgae Culture Systems, Oceanic Institute, Honolulu, pp. 275-286.

    Google Scholar 

  • Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J. appl. Phycol. 6: 131-141.

    Google Scholar 

  • Grima EM, Perez JAS, Camacho FG, Sanchez JLG, Fernandez FGA, Alonso DL (1994) Outdoor culture of Isochrysis galbana Alii-4 in a closed tubular photobioreactor. J. Biotechnol. 37: 159-166.

    Google Scholar 

  • Grima EM, Perez JAS, Camacho FG, Sevilla JMF, Fernandez FGA (1996) Productivity analysis of outdoor chemostat culture in tubular air-lift photobiorectors. J. appl. Phycol. 8: 369-380.

    Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J. appl. Phycol. 6: 331-335.

    Google Scholar 

  • Grobbelaar JU (2000) Physiological and technological considerations for optimisingmass algal cultures. J. appl. Phycol. 12: 201-206.

    Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. appl. Phycol. 8: 335-343.

    Google Scholar 

  • Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors. In Palz W, Pirruitz D (eds), Energy from Biomass Series E Vol. 5, Reidel, Dordrecht, pp. 184-193.

    Google Scholar 

  • Guterman H, Ben Yaskov S, Vonshak A (1989) Automatic on-line growth estimation method for outdoor algal biomass production. Biotechnol. Bioengng. 34: 143-152.

    Google Scholar 

  • Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Plant Physiol. 53: 14-20.

    Google Scholar 

  • Hoare DS, Hoare SL, Moore RB (1967) The photoassimilation of organic compounds by autotrophic blue-green algae. J. gen. Microbiol. 49: 351-370.

    Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioengng 51: 51-60.

    Google Scholar 

  • Hu Q, Richmond A (1994) Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J. appl. Phycol. 6: 391-396.

    Google Scholar 

  • Hu Q, Richmond A (1996) Productivity and photosynthetic effi-ciency of Spirulina platensis as affected by light intensity, cell density and rate of mixing in a flat plate photobioreactor. J. appl. Phycolo. 8: 139-145

    Google Scholar 

  • Javanmardian M, Palsson B (1991) High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnol. Bioeng. 38: 1182-1189.

    Google Scholar 

  • Kamiya A, Kowallik W(1987) Photoinhibition of glucose uptake in Chlorella. Plant Cell Physiol. 28: 611-619.

    Google Scholar 

  • Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentsenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J. appl. Phycol. 9: 559-563.

    Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Ferm. Bioengng. 74: 12-20.

    Google Scholar 

  • Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol. Lett. 19: 507-509.

    Google Scholar 

  • Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P (1999) Methanol as alternative carbon source for quicker efficient production of th microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol. 70: 357-362.

    Google Scholar 

  • Kyle DJ, Gladue RM (1991) Eicosapentaenoic acids and methods for their production. International Patent Application, Patent Cooperation Treaty Publication WO91/14427, October 3, 1991.

  • Lee YK (1986) Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend. Trends Biotechnol. 4: 186-189.

    Google Scholar 

  • Lee YK (1990) Genetic and technological improvements with respect to mass cultivation of microalgae. In Lee YK, Nga BH, Yeo V (eds), Microbiology Applications in Food Biotechnology. Institute of Standard & Industrial Research, Singapore, pp. 61-73.

    Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J. appl. Phycol. 9: 403-411.

    Google Scholar 

  • Lee YK, Ding SY, Hoe CH, Low CS (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. appl. Phycol. 8: 163-169.

    Google Scholar 

  • Lee YK, Ding SY, Low CS, Chang YC, Forday WL, Chew PC (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J. appl. Phycol. 7: 47-51.

    Google Scholar 

  • Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Bioengng 38: 995-1000.

    Google Scholar 

  • Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol. Bioengng 40: 1119-1122.

    Google Scholar 

  • Lee YK, Richmond A (1998) Bioreactor technology for mass cultivation of photoautotrophic microalgae. In Fingerman M, Nagabhushanam R, Thompson M (eds), Recent Advances in Marine Biotechnology Vol. 2, Environmental Marine Biotechnology. Oxford & IBH, New Delhi, pp. 271-288.

    Google Scholar 

  • Lee YK, Zhang DH (1999) Production of astaxanthin by Haematococcus. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.

    Google Scholar 

  • Lewin JC, Lewin RA (1967) Culture and nutrition of some apochlorotic diatoms. J. gen. Microbiol. 11: 361-367.

    Google Scholar 

  • Ma X, Chen KW, Lee YK (1997) Growth of Chlorella outdoor in a changing light environment. J appl. Phycol. 9: 425-430.

    Google Scholar 

  • Marquez FJ, Nishio N, Nagai S (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J. Chem. Tech. Biotechnol. 62: 159-164.

    Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioengng 76: 408-410.

    Google Scholar 

  • Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiol. 95: 1150-1155.

    Google Scholar 

  • Matsunaga T, Takeyama H, Sudo H, Oyama N, Nriura S, Takano H, Hirano m, Burgess JG, Sode K, Nakamura N (1991) Glutamate production from CO2 by marine cyanobacterium Synechococus sp. using a novel photobioreactor employing light-diffusing optical fibers. Appl. Biochem. Biotechnol. 28/29: 157-167.

    Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J. appl. Phycol. 10: 515-525.

    Google Scholar 

  • Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for largescale monoculture of microalgae. J. Biotechnol. 70: 249-270.

    Google Scholar 

  • Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by Fresenel lenses and transmitted through optical fibers. Bioengng Symp. 15: 331-345.

    Google Scholar 

  • Muller-Feuga A, Guedes RL, Herve A, Durand P (1998) Comparison of artificial light photobioreactors and other production systems using porphyridium cruentum. J. appl. Phycol. 10: 83-90.

    Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J. appl. Phycol. 9: 503-510.

    Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol. Bioengng. 23: 1121-1132.

    Google Scholar 

  • Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation. Development of processes for efficienct light utilization in photobioreactors. J. appl. Phycol. 12: 207-218.

    Google Scholar 

  • Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J. appl. Phycol. 10: 67-74.

    Google Scholar 

  • Ogbonna JC, Toshihiko S, Hideo T (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J. Biotechnol. 70: 289-297.

    Google Scholar 

  • Pearce J, Carr NG (1969) The incorporation and metabolism of glucose by Anabaena variabilis. J. gen. Microbiol. 54: 451-462.

    Google Scholar 

  • Pirt SJ, Lee YK, Richmond A, Pirt Watts M (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J. Chem. Technol. Biotechnol. 30: 25-34.

    Google Scholar 

  • Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J. Chem. Tech. Biotechnol. 33: 35-58.

    Google Scholar 

  • Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, pp. 209-218.

    Google Scholar 

  • Post AF, Dubinsky Z, Wyman K, Falkowski PG (1984) Kinetics of light-intensity adaptation in a marine planktonic diatom. Marine Biol. 83: 231-238.

    Google Scholar 

  • Pulz O (1994) Open-air and semi-closed cultivation systems for the mass cultivation of microalgae. In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in the Asia-Pacific Region. University of Malaya, Kuala Lumpur, pp. 113-117.

    Google Scholar 

  • Richmond A (1986) Handbook of Microalgal Mass Culture. CRC, Boca Raton: 528 pp.

    Google Scholar 

  • Richmond A (1996) Efficient utilization of high irradiance for production of photoautotropic cell mass: A survey. J. appl. Phycol. 8: 381-387.

    Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: A personal view. J. appl. Phycol. 12: 441-451.

    Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoor. J. appl. Phycol. 5: 327-332.

    Google Scholar 

  • Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. appl. Phycol. 2: 195-206.

    Google Scholar 

  • Robinson LF (1987) Improvements relating to biomass production. European Patent 0,239,272.

  • Running JA, Huss RJ, Olson PT (1994) Heterotrophic production of ascorbic acid by microalgae. J. appl. Phycol. 6: 99-104.

    Google Scholar 

  • Setlik I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol. Stud. (Trebon) 1: 11.

    Google Scholar 

  • Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J. Bact. 94: 972-983.

    Google Scholar 

  • Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In Shelef G, Soeder CJ (eds), Algae Biomass. Elsevier, Amsterdam, pp. 97-113.

    Google Scholar 

  • Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In Cohen Z (ed.), Chemicals from Microalgae. Taylor & Francis, London, pp. 41-56.

    Google Scholar 

  • Tan CK, Johns MR (1991) Fatty acid production by hetrotrophic Chlorella saccharophila. Hydrobiologia 215: 13-19.

    Google Scholar 

  • Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric. biol. Chem. 53: 305-312.

    Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11: 61-74.

    Google Scholar 

  • Tredici MR, Carlozzi P, Zittelli CG, Materassi R (1991) A vertical aveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Biores.Technol. 38: 153-159.

    Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J. appl. Phycol. 4: 221-231.

    Google Scholar 

  • Tsavalos AJ, Day JG (1994) Development of media for the mixotrophic/ heterotrophic culture of Brachiomonas submarina. J. appl. Phycol. 6: 431-433.

    Google Scholar 

  • Valiente EF, Nieva M, Avendano C, Maeso ES (1992) Uptake and utilization of fructose by Anabaena variabilis ATCC 29413. Effect on respiration and photosynthesis. Plant Cell Physiol. 33: 307-313.

    Google Scholar 

  • Vonshak A (1997) Outdoor mass production of Spirulina: The basic concept. In Vonshak A (ed.), Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis, London, pp. 79-99.

    Google Scholar 

  • Wood BJB, Grimson PHK, German JB, Turner M (1999) Photoheterotrophy in the production of phytoplankton organisms. J. Bact. 70: 175-183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YK. Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology 13, 307–315 (2001). https://doi.org/10.1023/A:1017560006941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017560006941

Navigation