Skip to main content
Log in

Microstructural, Dielectric, Pyroelectric and Ferroelectric Studies on Partially Grain-Oriented SrBi2Ta2O9 Ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Partially grain-oriented (48%) ceramics of strontium bismuth tantalate (SrBi2Ta2O9) have been fabricated via conventional sintering. The grain-orientation factor of the ceramics was determined, as a function of both the sintering temperature and duration of sintering using X-ray powder diffraction (XRD) techniques. Variations in microstructural features (from acircular to plate like morphology) as a function of sintering temperature of the pellets were monitored by Scanning Electron Microscopy (SEM). The dielectric constant and loss measurements as functions of both frequency and temperature have been carried out along the directions parallel and perpendicular to the pressing axis. The anisotropy (εrnrp) associated was found to be 2.21. The effective dielectric constant of the samples with varying porosity was predicted using different dielectric mixture formulae. The grain boundary and grain interior contributions to the dielectric properties were rationalized using the impedance spectroscopy. The pyroelectric coefficient for strontium bismuth tantalate ceramic was determined along the parallel and perpendicular directions to the pressing axis and found to be −23 μC/m2K and −71 μC/m2K, respectively at 300 K. The ferroelectric properties of these partially grain-oriented ceramics are superior in the direction perpendicular to the pressing axis to that in the parallel direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott and C.A. Paz de Araujo, Science, 246, 1400 (1989).

    Google Scholar 

  2. G.H. Haertling, J. Vac. Sci. Technol., 9, 414 (1990).

    Google Scholar 

  3. J.J. Lee, C.L. Thio, and S.B. Desu, J. Appl. Phys., 78, 5073(1995).

    Google Scholar 

  4. S. Dey and R. Zuleeg, Ferroelectrics, 108, 37 (1990).

    Google Scholar 

  5. H.N. Al-shareef, A.I. Kingon, X. Chen, K.R. Bellur, and O. Auciello, J. Mater. Res., 9, 2986 (1994).

    Google Scholar 

  6. W.L. Warren, D. Dimos, B.A. Tuttle, R.D. Nasby, and G.E. Pike, Appl. Phys. Lett., 65, 1018 (1994).

    Google Scholar 

  7. J.F. Chang and S.B. Desu, J. Mater. Res., 9, 955 (1994).

    Google Scholar 

  8. K. Amanuma, T. Hase, and Y. Miyasaka,Jpn. J. Appl. Phys., 33, 5211 (1994).

    Google Scholar 

  9. P.C. Joshi and S.B. Krupanidhi, J. Appl. Phys., 72, 5827 (1992).

    Google Scholar 

  10. B. Aurivillius, Ark. Kemi, 1, 463 (1949).

    Google Scholar 

  11. G.A. Smolenskii, V.A. Isupov, and A.I. Agranovskya, Sov. Phys. Solid State, 3, 651 (1961).

    Google Scholar 

  12. E.C. Subbarao, J. Phys. Chem. Solids, 23, 665 (1962).

    Google Scholar 

  13. C.A. Paz de Araujo, J.D. Cuchlaro, M.C. Scott, L.D. Mcmillan, and J.F. Scott, Nature, 374, 627 (1995).

    Google Scholar 

  14. S.B. Desu and T.K. Li, Mater. Sci. Engg. B,34, L4 (1995).

    Google Scholar 

  15. S.B. Desu and D.P. Vijay, Mater. Sci. Engg. B, 32, 75 (1995).

    Google Scholar 

  16. R. Dat, J.K. Lee, O. Auciello, and A.I. Kingon, Appl. Phys. Lett., 67, 572 (1995).

    Google Scholar 

  17. T. Li, Y. Zhu, S.B. Desu, C.H. Peng, and M. Nagata, Appl. Phys. Lett, 68, 616 (1995).

    Google Scholar 

  18. T.C. Chen, C.L. Thio, and S.B. Desu, J. Mater. Res., 12, 2628(1997) and references therein.

    Google Scholar 

  19. J.S. Yang and X.M. Chen, Mater. Lett., 29, 73 (1996).

    Google Scholar 

  20. S.E. Cummins and L.E. Cross, Appl. Phys. Lett., 10, 14 (1967); J. Appl. Phys., 39, 2268 (1968).

    Google Scholar 

  21. T. Takenaka, K. Shoji, H. Takai, and K. Sakata, in Proc. Jap. Cong. Materials Research, Tokyo (1975), p.230, (1976), p. 212.

  22. K. Sakata, T. Takenaka, and K. Shoji, Ferroelectrics, 22, 825(1978).

    Google Scholar 

  23. T. Takenaka and K. Sakata, in Proc. First Meeting on Ferroelectric Materials and Their Applications, Kyoto (1977), p. 309.

  24. T. Kimura, M.H. Holmes, and R.E. Newnham, J. Am. Ceram. Soc., 65, 223 (1982).

    Google Scholar 

  25. M. Granahan, M. Holmes, W.A. Schulze, and R.E. Newnham, J. Am. Ceram. Soc., 64, C68 (1981).

    Google Scholar 

  26. A. Halliyal, A.S. Bhalla, and R.E. Newnham, Mater. Res. Bull., 18, 1007 (1983).

    Google Scholar 

  27. A. Halliyal, A.S. Bhalla, R.E. Newnham, and L.E. Cross, Ferroelectrics, 38, 781 (1981).

    Google Scholar 

  28. A. Halliyal, A. Safari, A.S. Bhalla, R.E. Newnham, and L.E. Cross, J. Am. Ceram. Soc., 67, 331 (1984).

    Google Scholar 

  29. G. Senthil Murugan, K.B.R. Varma, Y. Takahashi, and T. Komatsu, Appl. Phys. Lett., 78, 4019 (2001).

    Google Scholar 

  30. F.K. Lotgering, J. Inorg. Nucl. Chem., 9, 113 (1959).

    Google Scholar 

  31. A. David Rae, J.G. Thompson, and R.L. Withers, Acta Cryst. B, 48, 418 (1992).

    Google Scholar 

  32. C.B. Sawyer and C.H. Tower, Phys. Rev., 35, 269 (1930).

    Google Scholar 

  33. R.L. Byer and C.B. Roundy, Ferroelectrics, 3, 333 (1972).

    Google Scholar 

  34. V.N. Sigaev, E.V. Lopatina, P.D. Sarkisov, S. Yu. Stefanovich, and V.I. Molev, Mater. Sci. Engg. B,48, 254 (1997).

    Google Scholar 

  35. K. Shantha and K.B.R. Varma, Mater. Res. Bull., 32, 1581 (1997).

    Google Scholar 

  36. C.H. Lu and B.K. Fang, J. Mater. Res., 13, 2262 (1998).

    Google Scholar 

  37. W. Buessem, L.E. Cross, and A.K. Goswami, J. Am. Ceram. Soc., 49, 34 (1966).

    Google Scholar 

  38. G. Haertling, Am. Ceram. Soc. Bull., 45, 1084 (1966).

    Google Scholar 

  39. K. Shoji, M. Aikawa, Y. Uehara, and K. Sakata, Jpn. J. Appl. Phys., 37, 5273 (1998).

    Google Scholar 

  40. H. Frolich, Theory of Dielectrics (Clarendon Press, Oxford, 1949).

    Google Scholar 

  41. K. Lichtenecker, Phys. Zeitsch., 27, 115 (1926).

    Google Scholar 

  42. N. Wiener, Phys. Zeitsch., 5, 332 (1904).

    Google Scholar 

  43. N. Wiener, Leipzig Ber., 61, 113 (1909).

    Google Scholar 

  44. F.A. Diaz and L.E. Cross, Ferroelectrics, 17, 405 (1977).

    Google Scholar 

  45. F. Micheron, Revue Technique Thomson-CSF, 4,5 (1972).

    Google Scholar 

  46. J.F. Berton and B. Roelandt, Bull. Soc. Fr. Ceram., 94, 51 (1972).

    Google Scholar 

  47. T. Takenaka and K. Sakata, Ferroelectrics, 118, 123 (1991).

    Google Scholar 

  48. A.S. Bhalla and R.E. Newnham, Phys. Stat. Sol. (a), 58, K19(1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.B.R. Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugan, G.S., Varma, K. Microstructural, Dielectric, Pyroelectric and Ferroelectric Studies on Partially Grain-Oriented SrBi2Ta2O9 Ceramics. Journal of Electroceramics 8, 37–48 (2002). https://doi.org/10.1023/A:1015547202006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015547202006

Navigation