Skip to main content
Log in

Integral Geometry of Tame Sets

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Curvature measures on certain tame Whitney-stratified sets are defined as coefficients of modified volume-growth polynomials. Stratified Morse theory yields alternative descriptions of these curvature measures for tame (possibly highly singular) sets. From this we obtain a generalized Gauss–Bonnet formula and various kinematic formulas. Finally, for O-minimal sets it is shown that curvature measures only depend on the inner metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allendoerfer, C.: The Euler number of a Riemann manifold, Amer. J. Math. 62 (1940), 243–248.

    Google Scholar 

  2. Allendoerfer, C. and Weil, A.: The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101–129.

    Google Scholar 

  3. Banchoff, T.: Critical points and curvature for embedded polyhedra, J. Differential Geom. 1 (1967), 245–256.

    Google Scholar 

  4. Blaschke, W.: Vorlesungen über Integralgeometrie, Teubner-Verlag, Leipzig, Berlin, 1935.

    Google Scholar 

  5. Cheeger, J., Müller, W. and Schrader, R.: On the curvature of piecewise flat spaces, Comm. Math. Phys. 92 (1984), 405–454.

    Google Scholar 

  6. Cheeger, J., Müller, W. and Schrader, R.: Kinematic and tube formulas for piecewise linear spaces, Indiana Univ. Math. J. 35(4) (1986), 737–754.

    Google Scholar 

  7. Chern, S.-S.; A simple intrinsic proof for the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. 45 (1944), 747–752.

    Google Scholar 

  8. Chern, S.-S.: On the kinematic formula in integral geometry, J. Math.Mech. 16 (1966), 101–118.

    Google Scholar 

  9. van den Dries, L.: Tame Topology and O-minimal Structures, London Math. Soc. Lecture Notes Ser. 248, Cambridge Univ. Press, 1998.

  10. Van den Dries, L. and Miller, C.: Geometric categories and O-minimal structures, Duke Math. J. 84 (1996), 497–540.

    Google Scholar 

  11. Federer, H.: Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.

    Google Scholar 

  12. Federer, H.: Geometric Measure Theory, Springer-Verlag, Berlin, 1969.

    Google Scholar 

  13. Ferus, D.: Totale Absolutkrümmung in Differentialgeometrie und-topologie, Lecture Notes in Math., Springer, New York, 1968.

    Google Scholar 

  14. Fu, J. H. G.: Curvature measures and generalized Morse theory, J. Differential Geom. 30 (1989), 619–642.

    Google Scholar 

  15. Fu, J. H. G.: Curvature measures of subanalytic sets, Amer. J. Math. 116(4) (1994), 819–880.

    Google Scholar 

  16. Gilkey, P.: Invariance Theory, the Heat Equation and the Atiyah Singer Equation, Publish or Perish, New York, 1984.

    Google Scholar 

  17. Goresky, M. and MacPherson, R.: Stratified Morse Theory, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  18. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin, 1957.

    Google Scholar 

  19. Hamm, H.: On stratified Morse theory, Topology 38 (1999), 427–438.

    Google Scholar 

  20. Hardt, R.: Topological properties of subanalytic sets, Trans. Amer. Math. Soc. 211 (1975), 57–70.

    Google Scholar 

  21. Milnor, J.: Morse Theory, Ann. of Math. Studies, 51, Princeton Univ. Press, Princeton, N.J., 1969.

    Google Scholar 

  22. Milnor, J.: Euler Characteristic and Finitely Additiv Steiner Measures, collected papers vol. 1, 213–234, Publish or Perish Inc., Boston, 1994.

    Google Scholar 

  23. Minkowski, H.: Theorie der konvexen Körper, Gesammelte Abh. 2, Leipzig, 1911, reprinted by Chelsea, pp. 131–229, 1967.

  24. Santaló, L.: Geometria Integral 15. Fórmula fundamental de la media cinemática para cilindros y planos paralelos móviles, Abh. Math. Sem. Univ. Hamburg 12, 1937.

  25. Santaló, L.: Integral Geometry and Geometric Probability, Addison-Wesley, Reading, Mass., 1976.

  26. Schneider, R. and Weil,W.: Integralgeometrie, Teubner-Verlag, Stuttgart, 1992.

    Google Scholar 

  27. Shiota, M.: Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, Boston, 1997.

    Google Scholar 

  28. Spivak, M.: Differential Geometry, Publish or Perish, Boston, 1975.

    Google Scholar 

  29. Thom, R.: Ensembles et morphismes stratifiés, Bull. Amer.Math. Soc. 75 (1969), 240–284.

    Google Scholar 

  30. Weyl, H.: On the volume of tubes, Amer. J. Math. 61 (1939), 461–472.

    Google Scholar 

  31. Whitney, H.: Tangents to an analytic variety, Ann. of Math. 81 (1965), 496–549.

    Google Scholar 

  32. Zähle, M.: Curvature and currents for unions of sets with positive reach, Geom. Dedicata 23 (1987), 155–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bröcker, L., Kuppe, M. Integral Geometry of Tame Sets. Geometriae Dedicata 82, 285–323 (2000). https://doi.org/10.1023/A:1005248711077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005248711077

Navigation