Skip to main content

Advertisement

Log in

A model of oxygen uptake kinetics in response to exercise: Including a means of calculating oxygen demand/deficit/debt

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a new model of the underlying dynamics of the oxygen uptake \(\dot VO_2 (\upsilon , t)\) kinetics for various exercise intensities. This model is in the form of a set of nonlinear coupled vector fields for the \(\ddot VO_2 (\upsilon , t)\) and \(\dot \upsilon \), the derivative of the exercise intensity with respect to time. We also present a new and novel means for calculating the oxygen demand, D(v, t), and hence also the oxygen deficit and debt, given the time series of the \(\dot VO_2 (\upsilon , t)\). This enables us to give better predictions for these values especially for when exercising at or close to maximal exercise intensities. Our model also allows us to predict the oxygen uptake time series given the time series for the exercise intensity as well as to investigate the oxygen uptake response to nonlinear exercise intensities. Neither of these features is possible using the currently used three-phase model. We also present a review of both the underlying physiology and the three-phase model. This includes for the first time a complete set of the analytical solutions of the three-phase model for the oxygen deficit and debt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrand, P.O., Saltin, B., 1961. Oxygen uptake during the first minutes of heavy muscular exercise. J. Appl. Physiol. 16(6), 971–976.

    Google Scholar 

  • Astrand, P.O., Rodahl, K., Dahl, H.A., Stromme, S.B., 2003. Textbook of Work Physiology: Physiological Bases of Exercise. Human Kinetics, Champaign, IL.

    Google Scholar 

  • Bangsbo, J., 1996a. Physiological factors associated with efficiency in high intensity exercise. Sports Med. 22(5), 299–305.

    Google Scholar 

  • Bangsbo, J., 1996b. Oxygen deficit: A measure of the anaerobic energy production during intense exercise? Can. J. Appl. Physiol. 21(5), 350–363.

    Google Scholar 

  • Bangsbo, J., 1998. Quantification of anaerobic energy production during intense exercise. Med. Sci. Sports Exerc. 30(1), 47–52.

    Google Scholar 

  • Bangsbo, J., Krustrup, P., Gonzalez-Alonso, J., Bonshel, R., Saltin, B., 2000. Muscle oxygen kinetics at onset of intense dynamic exercise in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R899–R906.

    Google Scholar 

  • Barstow, T.J., 1994. Characterization of \(\dot VO_2 \) kinetics during heavy exercise. Med. Sci. Sports Exerc. 26(11), 1327–1334.

    Google Scholar 

  • Barstow, T.J., Mole, P.A., 1987. Simulation of pulmonary oxygen uptake during exercise in humans. J. Appl. Physiol. 63, 2253–2261.

    Google Scholar 

  • Barstow, T.J., Mole, P.A., 1991. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J. Appl. Physiol. 71(6), 2099–2106.

    Google Scholar 

  • Barstow, T.J., Casaburi, R., Wasserman, K., 1993. O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate. J. Appl. Physiol. 75, 755–762.

    Google Scholar 

  • Bearden, S.E., Moffatt, R.J., 2000. \(\dot VO_2 \) kinetics and the O2 deficit in heavy exercise. J. Appl. Physiol. 88, 1407–1412.

    Article  Google Scholar 

  • Bernard, O., Maddio, F., Ouattara, S., Jimenez, C., Charpenet, A., Melin, B., Bittel, J., 1998. Influence of the oxygen uptake slow component on the energy cost of high-intensity submaximal treadmill running in humans. Eur. J. Appl. Physiol. 78, 578–585.

    Article  Google Scholar 

  • Billat, V.L., 2000. \(\dot VO_2 \) slow component and performance in endurance sports. Brit. J. Sports Med. 34(2), 83–85.

    Article  Google Scholar 

  • Billat, V.L., 2001a. Interval training for performance: A scientific and empirical practice. Special recommendations for middle and long distance running. Part I: Aerobic interval training. Sports Med. 31(1), 13–31.

    Article  Google Scholar 

  • Billat, V.L., 2001b. Interval training for performance: A scientific and empirical practice. Special recommendations for middle and long distance running. Part II: Anaerobic interval training. Sports Med. 31(12), 75–90.

    Article  Google Scholar 

  • Billat, V.L., Mille-Hamard, L., Demarle, A., Koralsztein, J., 2002. Effect of training in humans on off-and on-transient oxygen uptake kinetics after severe exhausting intensity runs. Eur. J. Appl. Physiol. 87, 496–505.

    Article  Google Scholar 

  • Billat, V.L., Bocquet, V., Slawinski, J., Laffitte, L., Demarle, A., Chassaing, P., Koralsztein, J.P., 2000. Effect of prior intermittent runs at vVO2max on oxygen kinetics during an all-out severe run in humans. J. Sports Med. Phys. Fitness 40, 185–194.

    Google Scholar 

  • Borrani, F., Canadau, R., Millet, G.Y., Perrey, S., Fuchslocher, J., Bouillon, 2001. Is the \(\dot VO_2 \) slow component dependent upon progressive recruitment of fast-twitch fibres in trained runners. J. Appl. Physiol. 90, 2212–2220.

    Google Scholar 

  • Brooks, G.A., Gaesser, G.A., 1980. End points of lactate and glucose metabolism after exhausting exercise. J. Appl. Physiol.: Respirat. Environ. Exerc. Physiol. 49, 1057–1069.

    Google Scholar 

  • Brooks, G.A., Hittelman, K.J., Faulkner, J.A., Beyer, R.E., 1971. Temperature, skeletal muscle mitochondrial functions, and oxygen debt. Am. J. Physiol. 220, 1053–1059.

    Google Scholar 

  • Casaburi, R., Barstow, T.J., Robinson, T., Wasserman, K., 1989a. Influence of work rate on ventilatory and gas exchange kinetics. J. Appl. Physiol. 67, 547–555.

    Google Scholar 

  • Casaburi, R., Daly, J., Hansen, J.E., Effros, R.M., 1989b. Abrupt changes in mixed venous blood gas composition after the onset of exercise. J. Appl. Physiol. 67, 1106–1112.

    Google Scholar 

  • Costill, D., Kovaleski, J., Porter, D., Kirwan, J., Fielding, R., King, D., 1985. Energy expenditure during front crawl swimming: Predicting success in middle distance events. Int. J. Sports Med. 6(4), 266–270.

    Article  Google Scholar 

  • Coyle, E.F., Hamilton, M.T., Alonso, J.G., Montain, S.J., Ivy, J.L., 1991. Carbohydrate metabolism during intense exercise when hyperglycemic. J. Appl. Physiol. 70, 834–840.

    Google Scholar 

  • Davies, C.T., Di Prampero, P.E., Cerretelli, P., 1972. Kinetics of the cardiac output and respiratory gas exchange during exercise and recovery. J. Appl. Physiol. 32, 618–625.

    Google Scholar 

  • Engelen, M., Porszasz, J., Riley, M., Wasserman, K., Maehara, K., Barstow, T.J., 1996. Effects of hypoxic hypoxia on O2 uptake and heart rate kinetics during severe exercise. J. Appl. Physiol. 81(6), 2500–2508.

    Google Scholar 

  • Gaesser, G.A., Brooks, G.A., 1984. Metabolic bases of excess post-exercise oxygen consumption: A review. Med. Sci. Sports Exerc. 16, 29–43.

    Google Scholar 

  • Gaesser, G.A., Poole, D.C., 1996. The slow component of oxygen uptake in humans. Exerc. Sport Sci. Rev. 24, 35–70.

    Google Scholar 

  • Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag.

  • Hamilton, M.T., Alonso, J.G., Montain, S.J., Coyle, E.F., 1991. Fluid replacement and glucose infusion during exercise prevents cardiovascular drift. J. Appl. Physiol. 71, 871–877.

    Google Scholar 

  • Harris, P., 1969. Lactic acid and the phlogiston debt. Cardiovasc. Res. 3, 381–390.

    Article  Google Scholar 

  • Hill, D.W., Ferguson, C.S., 1999. A physiological description of critical speed. Eur. J. Physiol. Occup. Physiol. 79(3), 290–293.

    Article  Google Scholar 

  • Hill, A.V., Lupton, L., 1923. Muscular exercise, lactic acid and the supply and utilization of oxygen. Q. J. Med. 16, 135–171.

    Google Scholar 

  • Hill, D.W., Stevens, E.C., 2001. The \(\dot VO_2 \) response to the onset of severe intensity exercise. Can. J. Appl. Physiol. 26(4), 350–355.

    Google Scholar 

  • Hill, D.W., Poole, D.C., Smith, J.C., 2002. The relationship between power and time to achieve \(\dot VO_{2_{max} } \). Med. Sci. Sports Exerc. 34(4), 709–714.

    Article  Google Scholar 

  • Kalis, J.K., Freund, B.J., Joyner, M.J., Jilka, S.M., Nitolo, J., Wilmore, J.H., 1988. Effect of B-blockade on the drift in O2 consumption during prolonged exercise. J. Appl. Physiol. 64, 753–758.

    Article  Google Scholar 

  • Kantz, H., Schreiber, T., 1999. Nonlinear Time Series Analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Karlsson, J., Saltin, B., 1970. Lactate, ATP and CrP in working muscles during exhausting exercise in man. J. Appl. Physiol. 29, 598–602.

    Google Scholar 

  • Kindig, C.A., McDonough, P., Erickson, H.H., Poole, D.C., 2001. Effect of L-NAME on oxygen uptake kinetics during heavy-intensity exercise in the horse. J. Appl. Physiol. 91, 891–896.

    Google Scholar 

  • Koga, S., 1990. Breath-by-breath gas exchange kinetics during constant load work. Ann. Physiol. Anthropol. 9(2), 163–166.

    Google Scholar 

  • Krogh, A., Lindhard, J., 1913. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. (Lond) 47, 112–136.

    Google Scholar 

  • Krogh, A., Lindhard, J., 1919–1920. The changes in respiration at the transition from work to rest. J. Physiol. (Lond) 53, 431–437.

    Google Scholar 

  • Lamarra, I., Whipp, B.J., Ward, S.A., Wasserman, K., 1987. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J. Appl. Physiol. 62, 2003–2012.

    Article  Google Scholar 

  • Langsetmo, I., Poole, D.C., 1999. \(\dot VO_2 \) recovery kinetics in the horse following moderate, heavy and severe exercise. J. Appl. Physiol. 86, 1170–1177.

    Article  Google Scholar 

  • Langsetmo, I., Weigle, G.E., Fedde, M.R., Erickson, H.H., Barstow, T.J., Poole, D.C., 1997. \(\dot VO_2 \) kinetics in the horse during moderate and heavy exercise. J. Appl. Physiol. 83, 1235–1241.

    Google Scholar 

  • Linnarsson, D., 1974. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol. Scand. Suppl. 415, 1–68.

    Google Scholar 

  • MacDonald, M., Pedersen, P.K., Hughuson, R.L., 1997. Acceleration of \(\dot VO_2 \) kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise. J. Appl. Physiol. 83(4), 1318–1325.

    Google Scholar 

  • Mader, A., 2003. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur. J. Appl. Physiol. 88(4–5), 317–338.

    Google Scholar 

  • Margaria, R., Mangili, F., Cuttica, F., Cerretelli, P., 1965. The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics 8, 49–54.

    Google Scholar 

  • Martin, D.E., Coe, P.N., 1997. Better Training for Distance Runners. Human Kinetics, Champaign, IL.

    Google Scholar 

  • Medbo, J.I., Mohn, A.C., Tabata, I., 1988. Anaerobic capacity determined by maximal accumulated O2 deficit. J. Appl. Physiol. 64, 50–60.

    Google Scholar 

  • Meyerhof, O., 1920. Die Energieumwandlungen im Muskel. II. Das Schicksal der Milchsäure in der Erholungsperiode des Muskels. Arch. Ges. Physiol. 182, 284–317.

    Article  Google Scholar 

  • Montpetit, R.R., Leger, L.A., Lavoie, J.M., Cazorla, G., 1981. \(\dot VO_2 \) peak during free swimming using the backward extrapolation of the O2 recovery curve. Eur. J. Appl. Physiol. Occup. Physiol. 47(4), 385–391.

    Article  Google Scholar 

  • Noakes, T., 2003. Lore of Running. Discover the Science and Spirit of Running, 4th edition. Human Kinetics, Champaign, IL.

    Google Scholar 

  • Obert, P., Cleuziou, C., Candau, R., Courteix, D., Lecoq, A.M., Guenon, P., 2000. The slow component of O2 uptake kinetics during high-intensity exercise in trained and untrained prepubertal children. Int. J. Sports Med. 21, 31–36.

    Article  Google Scholar 

  • Ozyener, F., Rossiter, H.B., Ward, S.A., Whipp, B.J., 2001. Influence of exercise intensity on the on-and off-transient kinetics of pulmonary oxygen uptake in humans. J. Appl. Physiol. 53(3), 891–902.

    Google Scholar 

  • Paterson, D.H., Whipp, B.J., 1991. Asymmetries of oxygen uptake transients at the on-and offset of heavy exercise in humans. J. Physiol. (Lond) 443, 575–586.

    Google Scholar 

  • Poole, D.C., 1994. Role of exercising muscle in slow component of \(\dot VO_2 \). Med. Sci. Sports Exerc. 26(11), 1335–1340.

    Google Scholar 

  • Poole, D.C., Barstow, T.J., Gaesser, G.A., Willis, W.T., Whipp, B.J., 1994. \(\dot VO_2 \) slow component: Physiological and functional significance. Med. Sci. Sport Exerc. 26(11), 1354–1358.

    Google Scholar 

  • Potter, C.R., Childs, D.J., Houghton, W., Armstrong, N., 1999. Breath-to-breath noise in the ventilatory and gas exchange responses of children to exercise. Eur. J. Appl. Physiol. Occup. Physiol. 80(2), 118–124.

    Article  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1993. Numerical Recipes in C: The Art of Scientific Computing, 2nd edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Puente-Maestu, L., Abad, J.B., Godoy, R., Pérez-Parra, J.M., Gubillo, J.M., Whipp, B.J., 2002. Breath-by-breath fluctuations of pulmonary gas exchange and ventilation in COPD patients. Eur. J. Appl. Physiol. 87, 535–541.

    Article  Google Scholar 

  • Ren, J.M., Broderg, S., Sahlin, K., 1989. Oxygen deficit is not affected by the rate of transition from rest to submaximal exercise. Acta Physiol. Scand. 135, 545–548.

    Article  Google Scholar 

  • Rodriguez, F.A., 2000. Maximal oxygen uptake and cardiorespiratory response to maximal 400 m free swimming, running and cycling tests in competitive swimmers. J. Sports Med. Phys. Fitness. 40(2), 87–95.

    Google Scholar 

  • Rodriguez, F.A., Mader, A., 2003. Energy metabolism during 400 m and 100 m crawl swimming: Computer simulation based on free swimming measurement. In: Chatard, J.C. (Ed.), Biomechanics and Medicine in Swimming IX. Publications de l’Universite de Saint-Etienne, Saint-Etienne, pp. 373–378.

  • Rodriguez, F.A., Keskinen, K.L., Keskinen, O.P., Malvela, M., 2003. Oxygen uptake kinetics during free swimming: A pilot study. In: Chatard, J.C. (Ed.), Biomechanics and Medicine in Swimming IX. Publications de l’Universite de Saint-Etienne, Saint-Etienne, pp. 379–384.

  • Rossiter, H.B., Howe, F.A., Ward, S.A., Kowalchuk, J.M., Griffiths, J.R., Whipp, B.J., 2000. Intersample fluctuations in phosphocreatine concentration determined by 31P-magnetic resonance spectroscopy and parameter estimation of metabolic responses to exercise in humans. J. Physiol. 528(2), 359–369.

    Article  Google Scholar 

  • Saltin, B., 1987. The physiological and biochemical basis of aerobic and anaerobic capacities in man; effect of training and range of adaption. In: Maehlum, S., Nilsson, S., Renstrom, P., (Eds.), An Update in Sports Medicine: Proceedings from the Second Scandinavian Conference in Sports Medicine. pp. 16–59.

  • Saltin, B., 1990. Anaerobic capacity: Past, present and prospective. In: Taylor, A., Gollmack, P.D. (Eds.), Biochemistry of Exercise VII. Human Kinetics, Champaign, IL, pp. 387–412.

    Google Scholar 

  • Saltin, B., Gagge, A.P., Bergh, U., Stolwigk, J.A.J., 1972. Body temperatures and sweating during exhaustive exercise. J. Appl. Physiol. 32(2), 635–643.

    Google Scholar 

  • Saltin, B., Kim, C.K., Terrados, N., Larsen, H., Svendenhag, J., Rolf, C.J., 1995a. Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scand. J. Med. Sports 5, 222–230.

    Article  Google Scholar 

  • Saltin, B., Larsen, H., Terrados, W., Bangsbo, J., Bak, T., Kim, C.K., Svedenhag, J., Rolf, C.J., 1995b. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand. J. Med. Sports 5, 209–221.

    Article  Google Scholar 

  • Stainsby, W.N., Barclay, J.K., 1970. Exercise metabolism: O2 deficit, steady level O2 uptake and O2 uptake for recovery. Med. Sci. Sports 2, 177–186.

    Google Scholar 

  • Stirling, J.R., 2000. Transport and bifurcation in a non-area preserving 2 dimensional map with applications to the discharge of pollution in an estuarine flow. Physica D 144, 169–193.

    Article  MATH  MathSciNet  Google Scholar 

  • Stirling, J.R., 2003. Nonlinear dynamics, transport and the patchiness of clouds of pollution in an estuarine fluid flow. Discrete Contin. Dyn. Syst., Ser. B 3(2), 263–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Stirling, J.R., Zakynthinaki, M.S., 2004. Mathematical modelling of the physiological response to exercise (translated into Polish). Sport Wyczynowy bimonthly periodical (submitted for publication).

  • Stirling, J.R., Zakynthinaki, M.S., 2004. Stability and the maintenance of balance following a perturbation from quiet stance. Chaos 14(1), 96–105.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasserman, K., Whipp, B.J., Castagna, J., 1974. Cadriodynamic hyperpnea: Hyperpnea secondary to cardiac output increase. J. Appl. Physiol. 36, 457–464.

    Google Scholar 

  • Wasserman, K., Hansen, J.E., Sue, D.Y., Casaburi, R., Whipp, B.J., 1999. Principles of Exercise Testing and Interpretation, Including Pathophysiology and Clinical Applications, third ed. Lippincott Williams and Wilkins.

  • Weissman, M.L., Jones, P.W., Oren, A., Lammarra, N., Whipp, B.J., Wasserman, K., 1982. Cardiac output increase and gas exchange at the start of exercise. J. Appl. Physiol. 52, 236–244.

    Google Scholar 

  • Weltman, A., 1995. The Blood Lactate Response to Exercise (Current Issues in Exercise Science). Human Kinetics, Champaign, IL.

    Google Scholar 

  • Whipp, B.J., 1994. The slow component of O2 uptake kinetics during heavy exercise. Medi. Sci. Sports Exerc. 26(11), 1319–1326.

    Google Scholar 

  • Whipp, B.J., Wasserman, K., 1972. Oxygen uptake kinetics for various intensities of constant load work. J. Appl. Physiol. 33, 351–356.

    Google Scholar 

  • Whipp, B.J., Rossiter, H.B., Ward, S.A., 2002. Exertional oxygen uptake kinetics: A stamen or stamina? Biochem. Soc. Trans. 237–247.

  • Xing, H.C., Cochrane, J.E., Yamamoto, Y., Hughson, R.L., 1991. Frequency domain analysis of ventilation and gas exchange kinetics in hypoxic exercise. J. Appl. Physiol. 71(6), 2394–2401.

    Google Scholar 

  • Zakynthinaki, M.S., Stirling, J.R., 2004. Smoothing of physiological time series data using Fourier filtering: Application to the heart rate response to exercise (submitted for publication).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Stirling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirling, J.R., Zakynthinaki, M.S. & Saltin, B. A model of oxygen uptake kinetics in response to exercise: Including a means of calculating oxygen demand/deficit/debt. Bull. Math. Biol. 67, 989–1015 (2005). https://doi.org/10.1016/j.bulm.2004.12.005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.12.005

Keywords

Navigation