Skip to main content
Log in

Modeling physiological resistance in bacterial biofilms

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, L., Charter, T., 2004. New geometric immersed interface multigrid solvers. SIAM Journal on Scientific Computing 25, 1516–1533.

    Article  MathSciNet  MATH  Google Scholar 

  • Allison, D., Gilbert, P., 1995. Modification by surface association of antimicrobial susceptibility of bacterial populations. Journal of Industrial Microbiology 15, 311–317.

    Article  Google Scholar 

  • Beyenal, H., Lewandowski, Z., 2001. Mass-transport dynamics, activity and structure of sulfate-reducing biofilms. AIChE Journal 47, 1689–1697.

    Article  Google Scholar 

  • Characklis, W.G., Marshall, K.C. (Eds.), 1990. Biofilms. John Wiley and Sons, Inc.

  • Chen, C.-I., Reinsel, M., Mueller, R., 1994. Kinetic investigation of microbial souring in porous media using microbial consortia from oil reservoirs. Biotechnology and Bioengineering 44, 263–269.

    Article  Google Scholar 

  • Cortez, R., 2001. The method of regularized Stokeslets. SIAM Journal of Scientific Computing 23, 1204–1224.

    Article  MATH  MathSciNet  Google Scholar 

  • Cortez, R., Fauci, L., Medovikov, A., 2004. The method of regularized Stokeslets in three dimensions: analysis, validation, and application to helical swimming. Physics of Fluids (in press).

  • Costerton, J., Stewart, P.S., Greenberg, E.P., 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.

    Article  Google Scholar 

  • Davies, D., 2003. Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery 2, 114–122.

    Article  Google Scholar 

  • DeBeer, D., Stoodley, P., Lewandowski, Z., 1996. Liquid flow and mass transfer in heterogeneous biofilms. Water Research 30, 2761–2765.

    Article  Google Scholar 

  • Dockery, J., Klapper, I., 2002. Finger formation in biofilm layers. SIAM Journal on Applied Mathematics 62, 853–869.

    Article  MathSciNet  Google Scholar 

  • Dodds, M.G., Grobe, K.J., Stewart, P.S., 2000. Modeling biofilm antimicrobial resistance. Biotechnology and Bioengineering 68, 456–465.

    Article  Google Scholar 

  • Eberl, H., Picioreanu, C., Heijnen, J., van Loosdrecht, M., 2000. A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chemical Engineering Science 55, 6209–6222.

    Article  Google Scholar 

  • Golub, G.H., Loan, C.F.V., 1996. Matrix Computations, 3rd edition. Johns Hopkins University Press.

  • Grobe, K., Zahler, J., Stewart, P., 2002. Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms. Journal of Industrial Microbiology and Biotechnology 29, 10–15.

    Article  Google Scholar 

  • Hentzer, M., Wu, H., Andersen, J.B., Riedel, K., Rasmussen, T.B., Bagge, N., Kumar, N., Song, Z., Schembri, M., Kristoffersen, P., Manefield, M., Costerton, J.W., Molin, S., Eberl, L., Steinberg, P., Kjelleberg, S., Hoiby, N., Givskov, M., 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. The EMBO Journal 22, 3803–3815.

    Article  Google Scholar 

  • Klapper, I., Rupp, C., Cargo, R., Purvedorj, B., Stoodley, P., 2002. Viscoelastic fluid description of bacterial biofilm material properties. Biotechnology and Bioengineering 80, 289–296.

    Article  Google Scholar 

  • Lappin-Scott, H.M., Costerton, J.W. (Eds.), 1995. Mechanisms of the protection of bacterial biofilms from antimicrobial agents. In: Microbial Biofilms. Cambridge University Press, Cambridge, pp. 118–130.

  • Lewis, K., 2001. Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy 45, 999–1007.

    Article  Google Scholar 

  • Lighthill, J.M., 1986. An Informal Introduction to Theoretical Fluid Mechanics. Oxford University Press, New York.

    MATH  Google Scholar 

  • Manem, J., Rittmann, B., 1992. Removing trace level organic pollutants in a biological filter. Journal of American Water Works 84, 152–157.

    Google Scholar 

  • Picioreanu, C., van Loosdrecht, M.C., Heijnan, J.J., 2001. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnology and Bioengineering 72, 205–218.

    Article  Google Scholar 

  • Potera, C., 1999. Forging a link between biofilms and disease. Science 283, 1837–1839.

    Article  Google Scholar 

  • Pozrikidis, C., 1998. Numerical Computation in Science and Engineering. Oxford University Press, New York.

    MATH  Google Scholar 

  • Prakash, B., Veeregowda, B., Krishnappa, G., 2003. Biofilms: a survival strategy of bacteria. Current Science India 85, 1299–1307.

    Google Scholar 

  • Roberts, M.E., Stewart, P.S., 2004. Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrobial Agents and Chemotherapy 48, 48–52.

    Article  Google Scholar 

  • Sanderson, S.S., Stewart, P.S., 1997. Evidence of bacterial adaption to monochloramine in Pseudomonas aeruginosa biofilms and evaluation of biocide action model. Biotechnology and Bioengineering 56, 201–209.

    Article  Google Scholar 

  • Stewart, P.S., 2003. Diffusion in biofilms. Journal of Bacteriology 185, 1485–1491.

    Article  Google Scholar 

  • Stewart, P.S., Roe, F., Rayner, J., Elkins, J.G., Lewandowski, Z., Ochsner, U.A., Hassett, D.J., 2000. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 66, 836–838.

    Article  Google Scholar 

  • Stoodley, P., Boyle, J.D., de Beer, D., Lappin-Scott, H.M., 1999. Evolving perspectives of biofilm structure. Biofouling 14(1), 75–90.

    Article  Google Scholar 

  • Stoodley, P., Jacobsen, A., Dunsmore, B., Purevdorj, B., Wilson, S., Lappin-Scott, H., Costerton, J., 2001. The influence of fluid shear and AlCl3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms. Water Science and Technology 43, 113–120.

    Google Scholar 

  • Sufya, N., Allison, D., Gilbert, P., 2003. Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. Journal of Applied Microbiology 95, 1261–1267.

    Article  Google Scholar 

  • Wanner, O., Reichert, P., 1996. Mathematical modeling of mixed-culture biofilms. Biotechnology and Bioengineering 49, 172–184.

    Article  Google Scholar 

  • Wingender, J., Neu, T.R., Fleming, H.-C., 1999. Microbial Extracellular Polymeric Substances. Characterization, Structure and Function. Springer-Verlag.

  • Yu, J., Ji, M., Yue, P., 1999. A three-phase fluidized bed reactor in the combined anaerobic/aerobic treatment of wastewater. Journal of Chemical Technology and Biotechnology 74, 619–626.

    Article  Google Scholar 

  • Zhang, X., Bishop, P.L., 2001. Spatial distribution of extracellular polymeric substances in biofilms. Journal of Environmental Engineering 127, 850–856.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Cogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cogan, N.G., Cortez, R. & Fauci, L. Modeling physiological resistance in bacterial biofilms. Bull. Math. Biol. 67, 831–853 (2005). https://doi.org/10.1016/j.bulm.2004.11.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.11.001

Keywords

Navigation