Skip to main content
Log in

Nonlinear waves in double-stranded DNA

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose a nonlinear model derived from first principles, to describe bubble dynamics of DNA. Our model equations include a term derived from the dissipative effect of intermolecular vibrational modes. Such modes are excited by the propagating bubble, and we term this ‘curvature dissipation’. The equations that we derive allow for stable pinned localized kinks which form the bubble. We perform the stability analysis and specify the energy requirements for the motion of the localized solutions. Our findings are consistent with properties of DNA dynamics, and can be used in models for denaturation bubbles, RNA and DNA transcription, nucleotide excision repair and meiotic recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B. et al., 2002. Molecular Biology of the Cell. Taylor & Francis, Inc.

  • Altan-Bonnet, G., Libchaber, A., Krichevsky, O., 2003. Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90, 138101.

    Google Scholar 

  • Ashkin, A., 1997. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. 94, 4853–4860.

    Article  Google Scholar 

  • Aubry, S., 1997. Breathers in nonlinear lattices: existence, linear stability and quantization. Physica D 103, 201–250.

    Article  MathSciNet  Google Scholar 

  • Barbi, M., Cocco, S., Peyrard, M., 1999a. Helicoidal model for DNA openings. Phys. Lett. A 253, 358–369.

    Article  Google Scholar 

  • Barbi, M., Cocco, S., Peyrard, M., Ruffo, S., 1999b. A twist opening model for DNA. J. Biol. Phys. 24, 358–369.

    Article  Google Scholar 

  • Barbi, M., Lepri, S., Peyrard, M., Theodorakopoulos, N., 2003. Thermal denaturation of a helicoidal DNA model. Phys. Rev. E 68, 061909–061923.

    Google Scholar 

  • Beard, D., Schlick, T., 2000a. Inertial stochastic dynamics. I. Long-time-step methods for Langevin dynamics. J. Chem. Phys. 112(17), 7313–7322.

    Article  Google Scholar 

  • Beard, D., Schlick, T., 2000b. Inertial stochastic dynamics. II. Influence of inertia on slow kinetic processes of supercoiled DNA. J. Chem. Phys. 112(17), 7323–7338.

    Article  Google Scholar 

  • Bensimon, D., Simon, A.J., Croquette, V., Bensimon, A., 1995. Stretching DNA with a receding meniscus: experiments and models. Phys. Rev. Lett. 74, 4754–4757.

    Article  Google Scholar 

  • Bernet, J., Zakrzewska, K., Lavery, R., 1997. Modelling base pair opening: the role of helical twist. J. Mol. Struct. (Theochem) 398–399, 473–482.

    Article  Google Scholar 

  • Beveridge, D.L., Dixit, S.B., Barreiro, G., Thayer, K.M., 2004. Molecular dynamics simulations of DNA curvature and flexibility: helix phasing and premelting. Biopolymers 73(3), 380–403.

    Article  Google Scholar 

  • Bhattacharjee, S.M., Seno, F., 2003. Helicase on DNA: a phase coexistence based mechanism. J. Phys. A 36, L181–L187.

    Article  Google Scholar 

  • Bianco, P.R., Kowalczykowski, S.C., 2000. Translocation step size and mechanism of the RecBC DNA helicase. Nature 405, 368–372.

    Article  Google Scholar 

  • Bogolubskaya, A.A., Bogolubsky, I.L., 1994. Two-component localized solutions in a nonlinear DNA model. Phys. Lett. A 192, 239–246.

    Article  Google Scholar 

  • Boland, T., Ratner, B.D., 1995. Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc. Natl. Acad. Sci. 92, 5297–5301.

    Article  Google Scholar 

  • Briki, F., Ramstein, J., Lavery, R., Genest, D., 1991. Evidence for the stochastic nature of base pair opening in DNA: a Brownian dynamics simulation. J. Am. Chem. Soc. 113, 2490–2493.

    Article  Google Scholar 

  • Bussiek, M., Klenin, K., Langowski, J., 2002. Kinetics of site-site interactions in supercoiled DNA with bent sequences. J. Mol. Biol. 322(4), 707–718.

    Article  Google Scholar 

  • Campa, A., 2001. Bubble propagation in a helicoidal molecular chain. Phys. Rev. E 63, 021901–021910.

    Google Scholar 

  • Dauxois, T., Peyrard, M., Willis, C.R., 1992. Localized breather-like solution in a discrete Klein-Gordon model and application to DNA. Physica D 57, 267–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Englander, S.W., Kallenbach, N.R., Heeger, A.J., Krumhansl, J.A., Litwin, S., 1980. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. Natl. Acad. Sci. 77, 7222–7226.

    Article  Google Scholar 

  • Evans, E., Fellows, J., Coffer, A., Wood, R.D., 1997. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 16, 625–638.

    Article  Google Scholar 

  • Fedyanin, V.K., Gochev, I., Lisy, V., 1986. Nonlinear dynamics of bases in continual model of DNA double helices. Stud. Biophys. 116, 59–64.

    Google Scholar 

  • Fischer, B.M., Walther, M., Jepsen, P.U., 2002. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. Biol. 47, 3807–3814.

    Article  Google Scholar 

  • Gelles, J., Landick, R., 1998. RNA polymerase as a molecular motor. Cell 93, 13–16.

    Article  Google Scholar 

  • Gerland, U., Bundschuh, R., Hwa, T., 2001. Force-induced denaturation of RNA. Biophys. J. 81, 1324–1332.

    Article  Google Scholar 

  • Giudice, E., Varnai, P., Lavery, R., 2003. Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res. 31(5), 1434–1443.

    Article  Google Scholar 

  • Goldstein, R.E., Goriely, A., Wolgemuth, C.W., 2000. Bistable helices. Phys. Rev. Lett. 84(7), 1631–1634.

    Article  Google Scholar 

  • Hansma, H.G., 1996. Atomic force microscopy of biomolecules. J. Vasc. Sci. Technol. B 14, 1390–1394.

    Article  Google Scholar 

  • Joos, B., Duesbery, M.S., 1997. Dislocation kink migration energies and the Frenkel-Kontorova model. Phys. Rev. B 55, 11161–11166.

    Google Scholar 

  • Kafri, Y., Mukamel, D., Peliti, L., 2000. Why is the DNA denaturation transition first order? Phys. Rev. Lett. 85, 4988–4991.

    Article  Google Scholar 

  • Kamien, R.D., Lubensky, T.V., Nelson, P., O’Hern, C.S., 1997. Direct determination of DNA twist-stretch coupling. Europhys. Lett. 38, 237–242.

    Article  MathSciNet  Google Scholar 

  • Koch, S.J., Wang, M.D., 2003. Dynamic force spectroscopy of protein-DNA interactions by unzipping DNA. Phys. Rev. Lett. 91, 028103.

    Google Scholar 

  • Lankas, F., Sponer, J., Langowski, J., Cheatham 3rd, T.E., 2004. DNA deformability at the base pair level. J. Am. Chem. Soc. 126(13), 4124–4125.

    Article  Google Scholar 

  • Lee, S.A., Anderson, A., Smith, W., Griffey, R.H., Mohan, V., 2000. Temperature-dependent Raman and infrared spectra of nucleosides Part I—adenosine. J. Raman Spectrosc. 31, 891–896.

    Article  Google Scholar 

  • Lee, S.A., Li, J., Anderson, A., Smith, W., Griffey, R.H., Mohan, V., 2001. Temperature-dependent Raman and infrared spectra of nucleosides: II, cytidine. J. Raman Spectrosc. 32, 795–802.

    Article  Google Scholar 

  • Lighthill, M.J., 1975. Mathematical Biofluid Dynamics. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • McConnell, K.J, Beveridge, D.L., 2000. DNA structure: what’s in charge? J. Mol. Biol. 304(5), 803–820.

    Article  Google Scholar 

  • McConnell, K.J., Beveridge, D.L., 2001. Molecular dynamics simulations of B-DNA: sequence effects on Atract-induced bending and flexibility. J. Mol. Biol. 314(1), 23–40.

    Article  Google Scholar 

  • Muto, V., Lomdahl, P.S., Christiansen, P.L., 1990. Two-dimensional discrete model for DNA dynamics: longitudinal wave propagation and denaturation. Phys. Rev. A 42, 7452–7458.

    Article  Google Scholar 

  • Mu, D., Wakasugi, M., Hsu, D.S., Sancar, A., 1997. Characterization of reaction intermediates of human excision repair nuclease. J. Biol. Chem. 272, 28971–28979.

    Google Scholar 

  • Olson, W., 2004. Private communication.

  • Peyrard, M., Bishop, A.R., 1989. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 2755–2758.

    Article  Google Scholar 

  • Poglitsch, C.L., Meredith, G.D., Gnatt, A.L., Jensen, G.J., Chang, W.H., Fu, J., Kornberg, R.D., 1999. Electron crystal structure of an RNA polymerase II transcription elongation complex. Cell 98, 791–798.

    Article  Google Scholar 

  • Porath, D., Cuniberti, G., Di Felice, R., 2004. Charge transport in DNA-based devices. cond-mat/0403640.

  • Ramachandran, G., Schlick, T., 1995. Solvent effects on supercoiled DNA explored by Langevin dynamics simulations. Phys. Rev. E 51, 6188–6203.

    Article  Google Scholar 

  • Ramstein, J., Lavery, R., 1988. Energetic coupling between DNA bending and base pair opening. Proc. Natl. Acad. Sci. USA 85, 7231–7235.

    Article  Google Scholar 

  • Schlick, T., 1995. Modeling superhelical DNA: recent analytical and dynamical approaches. Theory and Simulation, Honig, B. (Ed.), Curr. Opin. Struct. Biol. 5(2).

  • Schlick, T., 2001. Time-trimming tricks for dynamic simulations: splitting force updates to reduce computational work. Structure 9, R45–R53.

    Article  Google Scholar 

  • Smith, S.B., Cui, Y., Bustamante, C., 1996. Overstretching B-DNA: the elastic response of individual double stranded and single stranded DNA molecules. Science 271, 795–799.

    Google Scholar 

  • Soffer, A., 2001. Dissipation through dispersion. CRM Proc. Lecture Notes 27, 175–184.

  • Theodorakopoulos, N., Dauxois, T., Peyrard, M., 2000. Order of the phase transition in models of DNA thermal denaturation. Phys. Rev. Lett. 85, 6–9.

    Article  Google Scholar 

  • Wang, M.D., Schnitzer, M.J., Yin, H., Landick, R., Gelles, J., Block, S.M., 1998. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907.

    Article  Google Scholar 

  • Wiggins, C.H., Goldstein, R.E., 1998. Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80(17), 3879–82.

    Article  Google Scholar 

  • Willis, C., El-Batanouny, M., Stancioff, P., 1986. Sine-Gordon kinks on a discrete lattice. I. Hamiltonian formalism. Phys. Rev. B 33, 1904–1911.

    Article  Google Scholar 

  • Yakushevich, L.V., 1989. Nonlinear DNA dynamics: a new model. Phys. Lett. A 136, 413–417.

    Article  Google Scholar 

  • Yang, L., Beard, W.A., Wilson, S.H., Roux, B., Broyde, S., Schlick, T., 2002. Local deformations revealed by dynamics simulations of DNA polymerase with DNA mismatches at the primer terminus. J. Mol. Biol. 321, 459–478.

    Article  Google Scholar 

  • Zou, Y., Houten, B.V., 1999. Strand opening by the UvrA(2)B complex allows dynamic recognition of DNA damage. EMBO J. 18, 4889–4901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Komarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarova, N.L., Soffera, A. Nonlinear waves in double-stranded DNA. Bull. Math. Biol. 67, 701–718 (2005). https://doi.org/10.1016/j.bulm.2004.09.008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.09.008

Keywords

Navigation