Skip to main content
Log in

Stability of cardiac waves

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cardiac waves can fail to propagate when the membrane potential of the cells in the wavefront rises too slowly. The sodium channel inactivation gates play an important role in this process of propagation block. Simple models including inactivation gates can have travelling waves of constant form with two possible velocities. A stability analysis demonstrates that the slower velocity is always unstable, and in limited parameter regimes the faster velocity can also be unstable. Waves with the lower velocity propagate a finite distance before they dissipate due to this instability and this distance is calculated. The distance can be large suggesting that they might be seen in certain pathological conditions. The analytical results are compared with numerical simulations of the simplified model and a detailed cardiac ionic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beeler, G. W. and H. Reuter (1977). Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268, 177–210.

    Google Scholar 

  • Biktashev, V. N. (2002). Dissipation of the excitation wavefronts. Phys. Rev. Lett. 89, 168102.

    Google Scholar 

  • Brugada, P. and J. Brugada (1992). Right bundle branch block, persistent st segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396.

    Article  Google Scholar 

  • Carpenter, G. A. (1977). Periodic solutions of nerve impulse equations. J. Math. Anal. Appl. 58, 152–173.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, Q. et al. (1998). Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296.

    Article  Google Scholar 

  • Dockery, J. D. and J. P. Keener (1989). Diffusive effects of dispersion in excitable media. SIAM J. Appl. Math. 49, 539–566.

    Article  MathSciNet  MATH  Google Scholar 

  • FitzHugh, R. A. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43, 867–896.

    Article  Google Scholar 

  • Hastings, S. P. (1975). On travelling wave solutions of the Hodgkin-Huxley equations. Arch. Rational Mech. Anal. 60, 229–257.

    Article  MathSciNet  Google Scholar 

  • Hinch, R. (2002a). An analytical study of the physiology and pathology of the propagation of cardiac action potentials. Prog. Biophys. Mol. Biol. 78, 45–81.

    Article  Google Scholar 

  • Hinch, R., (2002b). Mathematical models of the heart. PhD thesis, Oxford University.

  • Hodgkin, A. L. and A. F. Huxley (1952a). The dual effect of membrane potential on sodium conductance in the giant axon of loligo. J. Physiol. 117, 497–506.

    Google Scholar 

  • Hodgkin, A. L. and A. F. Huxley (1952b). A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol. 117, 507–544.

    Google Scholar 

  • Kagiyama, Y., J. L. Hill and L. S. Gettes (1982). Interaction of acidosis and increased extracellular potassium on action potential characteristics and conduction in guinea pig ventricular muscle. Circ. Res. 51, 614–623.

    Google Scholar 

  • Lapidus, L. and G. F. Pinder (1999). Numerical Solutions of Partial Differential Equations in Science and Engineering, Wiley.

  • Luo, C. H. and Y. Rudy (1994). A dynamicmodel of cardiac ventricular action potentials, i: simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096.

    Google Scholar 

  • Maginu, K. (1985). Geometrical characteristics associated with stability and bifurcations of periodic travelling waves in reaction-diffusion systems. SIAM J. Appl. Math. 45, 750–773.

    Article  MATH  MathSciNet  Google Scholar 

  • McKean, H. P. (1970). Nagumo’s equation. Adv. Math. 4, 209.

    Article  MATH  MathSciNet  Google Scholar 

  • Miller, R. N. and J. Rinzel (1981). The dependence of impulse propagation speed on firing frequency, dispersion, for the Hodgkin-Huxley model. Biophys. J. 34, 227–259.

    Google Scholar 

  • Nagumo, J., S. Arimoto and S. Yoshizawa (1962). An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061.

    Google Scholar 

  • Noble, D. (1960). Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature 188, 495–497.

    Google Scholar 

  • Noble, D., A. Varghese, P. Kohl and P. Noble (1998). Improved guinea-pig ventricular cell model incorporating a diadic space, i K r and i K s, and length-and tension-dependent processes. Can. J. Cardiol. 14, 123–134.

    Google Scholar 

  • Ockendon, J., S. Howison, A. Lacy and A. Movchan (1999). Applied Partial Differential Equations, Oxford University Press.

  • Rinzel, J. and J. B. Keller (1973). Traveling wave solutions of a nerve conduction equation. Biophys. J. 13, 1313–1337.

    Article  Google Scholar 

  • Shaw, R. M. and Y. R. Rudy (1997). Electrophysiological effects of acute myocardial ischaemia: a mechanistic investigation of action potential conduction and conduction failure. Circ. Res. 80, 124–138.

    Google Scholar 

  • Tan, H. L., M. T. E. Bink-Boelkens, C. R. Bezzina, P. C. Viswanathan, G. C. M. BeaufortKrol, P. J. van Tintelen, M. P van den Berg, A. A. M. Wilde and J. R. Balser (2001). A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409, 1043–1047.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hinch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinch, R. Stability of cardiac waves. Bull. Math. Biol. 66, 1887–1908 (2004). https://doi.org/10.1016/j.bulm.2004.05.004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.05.004

Keywords

Navigation