Skip to main content
Log in

Comparison of three models predicting developmental milestones given environmental and individual variation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In all organisms, phenotypic variability is an evolutionary stipulation. Because the development of poikilothermic organisms depends directly on the temperature of their habitat, environmental variability is also an integral factor in models of their phenology. In this paper we present two existing phenology models, the distributed delay model and the Sharpe and DeMichele model, and develop an alternate approach, called the Extended von Foerster model, based on the age-structured McKendrick-von Foerster partial differential model. We compare the models theoretically by examining the biological assumptions made in the basic derivation of each approach. In particular, we focus on each model’s ability to incorporate variability among individuals as well as variability in the environment. When compared against constant temperaturemountain pine beetle (Dendroctonus ponderosae Hopkins) laboratory developmental data, the Extended von Foerster model exhibits the highest correlation between theory and observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amman, G. D. (1973). Population changes of the mountain pine beetle in relation to elevation. Environ. Ent. 2, 541–547.

    Google Scholar 

  • Bentz, B. J., J. A. Logan and G. D. Amman (1991). Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Can. Entomol. 123, 1083–1094.

    Google Scholar 

  • Bentz, B. J., J. A. Logan and J. C. Vandygriff (2001). Latitudinal variation in Dendroctonus ponderosae (Coleoptera: Scolytidae) development time and adult size. Can. Entomol. 133, 357–387.

    Article  Google Scholar 

  • DuChateau, P. and D. W. Zachmann (1986). Schaum’s Outline of Theory and Problems of Partial Differential Equations, New York: McGraw-Hill.

    Google Scholar 

  • Edelstein-Keshet, L. (1988). Mathematical Models in Biology, New York: McGraw-Hill.

    MATH  Google Scholar 

  • Forrester, J. W. (1961). Industrial Dynamics, Cambridge, Mass: M.I.T. Press.

    Google Scholar 

  • Getz, W. M. (1998). An introspection on the art of modeling in population ecology. Bioscience 48, 540–552.

    Article  Google Scholar 

  • Heath, M. T. (1997). Scientific Computing: An Introductory Survey, New York: WCB/McGraw-Hill.

    Google Scholar 

  • Hopper, K. R. (1999). Risk-spreading and bet-hedging in insect population ecology. Annu. Rev. Entomol. 44, 535–560.

    Article  Google Scholar 

  • Jenkins, J. L., J. A. Powell, J. A. Logan and B. J. Bentz (2001). Low seasonal temperatures promote life cycle synchronization. Bull. Math. Biol. 63, 573–595.

    Article  Google Scholar 

  • Logan, J. D. (1997). Applied Mathematics, 2nd edn, New York: John Wiley & Sons, Inc.

    MATH  Google Scholar 

  • Logan, J. A. and G. D. Amman (1986). A distribution model for egg development in mountain pine beetle. Can. Entomol. 118, 361–372.

    Google Scholar 

  • Logan, J. A. and B. J. Bentz (1999). Model analysis of mountain pine beetle seasonality. Environ. Ent. 28, 924–934.

    Google Scholar 

  • Logan, J. A. and J. A. Powell (2001). Ghost forests, global warming and the mountain pine beetle. Amer. Entomol 47, 160–173, Fall 2001.

    Google Scholar 

  • MacDonald, N. (1978). Time Lags in Biological Models, S. A. Levin (Ed.), Lecture Notes Biomathematics 27, Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Manetsch, T. J. (1966). Transfer function representation of the behavior of a class of economic processes. IEEE Trans. Control. AC-11, 693–698.

    Article  Google Scholar 

  • Manetsch, T. J. (1976). Time-varying distributed delays and their use in models of large systems. IEEE Trans. Systems Man Cybernetics SMC-6, 547–553.

    Google Scholar 

  • Manetsch, T. J. (1980). Bilateral distributed delays and their use in modeling classes of distributed parameter processes. IEEE Trans. Systems Man Cybernetics SMC-10, 61–67.

    Google Scholar 

  • McKendrick, A. G. (1926). The application of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130.

    Article  Google Scholar 

  • Murray, J. D. (1989). Mathematical Biology, Heidelberg: Springer-Verlag.

    MATH  Google Scholar 

  • Oster, G. and Y. Takahashi (1974). Models for age-specific interactions in a periodic environment. Ecol. Monog. 44, 483–501.

    Article  Google Scholar 

  • Plant, R. E. and L. T. Wilson (1986). Models for age structured populationswith distributed maturation rates. J. Math. Biol. 23, 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Powell, J. A., J. Jenkins, J. A. Logan and B. J. Bentz (2000). Seasonal temperature alone can synchronize life cycles. Bull. Math. Biol. 62, 977–998.

    Article  Google Scholar 

  • Safranyik, L. (1978). Effects of climate and weather on mountain pine beetle populations, in Symposium Proceedings, Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests, 25027 April 1978, A. A. Berryman, G. D. Amman and R. W. Stark (Eds), University of Idaho Forest, Wildlife and Range Experiment Station, Moscow, ID, pp. 77–84.

    Google Scholar 

  • Sharpe, P. J. H. and D. W. DeMichele (1977). Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–670.

    Article  Google Scholar 

  • Sharpe, P. J. H., G. L. Curry, D. W. DeMichele and C. L. Cole (1977). Distribution model of organism development times. J. Theor. Biol. 66, 21–38.

    Article  Google Scholar 

  • Slobodkin, L. B. (1953). An algebra of population growth. Ecology 34, 513–519.

    Article  Google Scholar 

  • Vansickle, J. (1977). Attrition in distributed delay models. IEEE Trans. Systems Man Cybernetics 7, 635–638.

    Article  MathSciNet  Google Scholar 

  • von Foerster, H. (1959). The Kinetics of Cellular Proliferation, F. Stohmann Jr (Ed.), New York: Grune and Stratton, pp. 382–407.

    Google Scholar 

  • Werner, P. A. and H. Caswell (1977). Population growth rates and age versus stage-distribution models for teasel (Dipsacus sylvestris Huds.). Ecology 58, 1103–1111.

    Article  Google Scholar 

  • Zaslavski, V. A. (1988). Insect Development: Photoperiodic and Temperature Control, Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Powell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, E., Powell, J.A., Logan, J.A. et al. Comparison of three models predicting developmental milestones given environmental and individual variation. Bull. Math. Biol. 66, 1821–1850 (2004). https://doi.org/10.1016/j.bulm.2004.04.003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.04.003

Keywords

Navigation