Skip to main content
Log in

Mathematical aspects of protein structure determination with NMR orientational restraints

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The field of structural biology is becoming increasingly important as new technological developments facilitate the collection of data on the atomic structures of proteins and nucleic acids. The solid-state NMR method is a relatively new biophysical technique that holds particular promise for determining the structures of peptides and proteins that are located within the cell membrane. This method provides information on the orientation of the peptide planes relative to an external magnetic field. In this article, we discuss some of the mathematical methods and tools that are useful in deriving the atomic structure from these orientational data. We first discuss how the data are viewed as tensors, and how these tensors can be used to construct an initial atomic model, assuming ideal stereochemistry. We then discuss methods for refining the models using global optimization, with stereochemistry constraints treated as penalty functions. These two processes, initial model building followed by refinement, are the two crucial steps between data collection and the final atomic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science 181, 223–230.

    Google Scholar 

  • Bertram, R., T. Asbury, F. Fabiola, J. R. Quine, T. A. Cross and M. S. Chapman (2003). Atomic refinement with correlated solid-state NMR restraints. J. Magn. Reson. 163, 300–309.

    Article  Google Scholar 

  • Bertram, R., J. R. Quine, M. S. Chapman and T. A. Cross (2000). Atomic refinement using orientational restraints from solid-state NMR. J. Magn. Reson. 147, 9–16.

    Article  Google Scholar 

  • Brender, J. R., D. M. Taylor and A. Ramamoorthy (2001). Orientation of amide-nitrogen-15 chemical shift tensors in peptides: a quantum mechanical study. J. Am. Chem. Soc. 123, 914–922.

    Article  Google Scholar 

  • Brenneman, M. T. and T. A. Cross (1990). A method for the analytic determination of polypeptide structure using solid-state nuclear magnetic resonance: the metric method. J. Chem. Phys. 92, 1483–1494.

    Article  Google Scholar 

  • Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.

    Article  Google Scholar 

  • Brünger, A. T. (1992a). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475.

    Article  Google Scholar 

  • Brünger, A. T. (1992b). X-Plor Version 3.1, A System for Crystallography and NMR, New Haven, CT: Yale University Press.

    Google Scholar 

  • Brünger, A. T. et al. (1998). Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D 54, 905–921.

    Article  Google Scholar 

  • Brünger, A. T. and L. M. Rice (1997). Crystallographic refinement by simulated annealing: methods and applications. Methods Enzymol. 277, 243–269.

    Google Scholar 

  • Clore, G. M., A. M. Gronenborn and N. Tjandra (1998). Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Magn. Reson. 131, 159–162.

    Article  Google Scholar 

  • Cross, T. A. and J. R. Quine (2000). Protein structure in anisotropic environments: development of orientational constraints. Concepts Magn. Reson. 12, 55–70.

    Article  Google Scholar 

  • Denny, J. K., J. Wang, T. A. Cross and J. R. Quine (2001). PISEMA powder patterns and PISA wheels. J. Magn. Reson. 152, 217–226.

    Article  Google Scholar 

  • Diamond, R. (1971). A real-space refinement procedure for proteins. Acta Crystallogr. A 27, 436–452.

    Article  Google Scholar 

  • Evans, J. N. S. (1995). Biomolecular NMR Spectroscopy, New York: Oxford University Press.

    Google Scholar 

  • Havel, T. F. and A. W. M. Dress (1993). Distance geometry and geometric algebra. Found. Phys. 23, 1357–1374.

    Article  MathSciNet  Google Scholar 

  • Hendrickson, W. A. (1985). Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 115, 252–270.

    Article  Google Scholar 

  • Ketchem, R. R., B. Roux and T. A. Cross (1997). High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5, 1655–1669.

    Article  Google Scholar 

  • Kirkpatrick, S., C. D. Gelatt Jr and M. P. Vecchi (1983). Optimization by simulated annealing. Science 220, 671–680.

    MathSciNet  Google Scholar 

  • Lee, D.-K., Y. Wei and A. Ramamoorthy (2001). A two-dimensional magic-angle decoupling and magic-angle turning solid-state NMR method: an application to study chemical shift tensors from peptides that are nonselectively labeled with 15N isotope. J. Phys. Chem. B 105, 4752–4762.

    Article  Google Scholar 

  • MacKerell, A. D. Jr et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. 102, 3586–3616.

    Google Scholar 

  • Mai, W., W. Hu, C. Wang and T. A. Cross (1993). Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: the polypeptide backbone of gramicidin A in a lipid bilayer. Protein Sci. 2, 532–542.

    Article  Google Scholar 

  • Marassi, F. M. and S. J. Opella (2000). A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson. 144, 150–155.

    Article  Google Scholar 

  • Mascioni, A. and G. Veglia (2003). Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins. J. Am. Chem. Soc. 41, 12520–12526.

    Google Scholar 

  • Mazur, A. K. and R. A. Abagyan (1989). New methodology for computer-aided modelling of biomolecular structure and dynamics. (I) Non-cyclic structures. J. Biomol. Struct. Dynam. 4, 815–832.

    Google Scholar 

  • Mesleh, M. F. and S. J. Opella (2003). Dipolar waves as NMR maps of helices in proteins. J. Magn. Reson. 163, 288–299.

    Article  Google Scholar 

  • Oas, T. G., C. J. Hartzell, F. W. Dahlquist and G. P. Drobny (1987). The amide 15N chemical shift tensors of four peptides determined from 13C dipole-coupled chemical shift powder patterns. J. Am. Chem. Soc. 109, 5962–5966.

    Article  Google Scholar 

  • Prestegard, J. H., J. R. Tolman, H. M. Al-Hashimi and M. Andrec (1999). Protein structure and dynamics from field-induced residual dipolar couplings, in Biological Magnetic Resonance, Volume 17: Structure and Dynamics in Protein NMR, Krishna and Berliner (Eds), New York: Plenum Publishers, pp. 311–355.

    Google Scholar 

  • Quine, J. R. (1999). Helix parameters and protein structures using quaternions. Theochem 460, 53–66.

    Article  Google Scholar 

  • Quine, J. R. and T. A. Cross (2000). Protein structure in anisotropic environments: unique structural fold from orientational constraints. Concepts Magn. Reson. 12, 71–82.

    Article  Google Scholar 

  • Ramamoorthy, A., F. Marassi, M. Zasloff and S. J. Opella (1995). Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. J. Biol. NMR 6, 329–334.

    Google Scholar 

  • Ramamoorthy, A. and S. J. Opella (1995). Two-dimensional chemical shift/heteronuclear dipolar coupling spectra obtained with polarization inversion spin exchange at the magic angle and magic-angle sample spinning (PISEMAMAS). Solid State NMR 4, 387–392.

    Article  Google Scholar 

  • Ramamoorthy, A., C. H. Wu and S. J. Opella (1999). Experimental aspects of multidimensional solid-state NMR correlation spectroscopy. J. Magn. Reson. 140, 131–140.

    Article  Google Scholar 

  • Rice, L. M. and A. T. Brünger (1994). Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins: Struct. Funct. Genetics 19, 277–290.

    Article  Google Scholar 

  • Teng, Q., M. Iqbal and T. A. Cross (1992). Determination of the 13C chemical shift and 14N electric field gradient tensor orientations with respect to the molecular frame in a polypeptide. J. Am. Chem. Soc. 114, 5312–5321.

    Article  Google Scholar 

  • Tian, F., Z. Song and T. A. Cross (1998). Orientational constraints derived from hydrated powder samples by two-dimensional PISEMA. J. Magn. Reson. 135, 227–231.

    Article  Google Scholar 

  • Tjandra, N., J. Marquardt and G. M. Clore (2000). Direct refinement against proton-proton dipolar couplings in NMR structure determination of macro-molecules. J. Magn. Reson. 142, 393–396.

    Article  Google Scholar 

  • Vaidehi, N. and W. A. Goddard III (2001). Atomic-level simulation and modeling of biomacromolecules, in Computational Modeling of Genetic and Biochemical Networks, J. M. Bower and H. Bolouri (Eds), Cambridge, MA: MIT Press, pp. 161–188.

    Google Scholar 

  • Wallin, P. J. and G. Von Heijne (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quine, J.R., Cross, T.A., Chapman, M.S. et al. Mathematical aspects of protein structure determination with NMR orientational restraints. Bull. Math. Biol. 66, 1705–1730 (2004). https://doi.org/10.1016/j.bulm.2004.03.006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.03.006

Keywords

Navigation