Skip to main content

Advertisement

Log in

Fuzzy modeling in symptomatic HIV virus infected population

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper introduces a model for the evolution of positive HIV population and manifestation of AIDS (acquired immunideficiency syndrome). The focus is on the nature of the transference rate of HIV to AIDS. Expert knowledge indicates that the transference rate is uncertain and depends strongly on the viral load and the CD4+ level of the infected individuals. Here, we suggest to view the transference rate as a fuzzy set of the viral load and CD4+ level values. In this case the dynamic model results in a fuzzy model that preserves the biological meaning and nature of the transference rate λ. Its behavior fits the natural history of HIV infection reported in the medical science domain. The paper also includes a comparison between the fuzzy model and a classic Anderson’s model using data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barros, L., R. C. Bassanezi and M. B. Leite (2003). The epidemiological models SI with fuzzy parameter of transmission. Comput. Math. Appl. 45, 1619–1628.

    Article  MathSciNet  Google Scholar 

  • Brazilian Ministry of Health (2004). http://www.aids.gov.br.

  • Caetano, M. and T. Yoneyama (1999). A comparative evaluation of open loop and closed loop drug administration strategies in the treatment of AIDS. Acad. Brasil. Ciên. 71, 589–597.

    Google Scholar 

  • Coutinho, F., L. F. Lopez, M. N. Burattini and E. Massad (2001). Modelling the natural history of HIV infection in individuals and its epidemiological implications. Bull. Math. Biol. 63, 1041–1062.

    Article  Google Scholar 

  • Jafelice, R., L. C. Barros, R. C. Bassanezi and F. Gomide (2002a). Fuzzy rules in asymptomatic HIV virus infected individuals model, in Frontiers in Artificial Intelligence and Applications Vol. 85, Ohmsha: IOS Press, pp. 208–215.

    Google Scholar 

  • Jafelice, R., L. C. Barros, R. C. Bassanezi and F. Gomide (2002b). Modelos epidemiológicos com parâmetros subjetivos. Technical report, Department of Computer Engineering and Industrial Automation, FEEC, State University of Campinas (in Portuguese).

  • Jafelice, R., L. C. Barros, R. C. Bassanezi and F. Gomide (2003). Methodology to determine the evolution of asymptomatic HIV population using fuzzy set theory (submitted for publication).

  • Kandel, A. (1986). Fuzzy Mathematical Techniques with Applications, Addison-Wesley.

  • Krivan, V. and G. Colombo (1998). A non-stochastic approach for modeling uncertainty in population dynamics. Bull. Math. Biol. 60.

  • Murray, J. (1990). Mathematical Biology, Berlin: Springer.

    Google Scholar 

  • Nguyen, H. and E. A. Walker (2000). A First Course in Fuzzy Logic, Chapman and Hall/CRC.

  • Novak, M. (1999). The mathematical biology of human infections. Conservation Ecol. 3.

  • Novak, M. and C. R. M. Bangham (1996). Population dynamics of immune responses to persistene viruses. Science 272.

  • Ortega, N., L. C. Barros and E. Massad (2003). Fuzzy gradual rules in epidemiology. Kybernetes: Int. J. Syst. Cybernetics 32, 460–477.

    Article  Google Scholar 

  • Pedrycz, W. and F. Gomide (1998). An Introduction to Fuzzy Sets: Analysis and Design, Massachusetts Institute of Technology.

  • Perelson, A. and P. W. Nelson (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44.

    Article  MathSciNet  Google Scholar 

  • Peterman, T., D. P. Drotman and J. W. Curran (1985). Epidemiology of the acquired immunodeficiency syndrome AIDS. Epidemiol. Rev. 7, 7–21.

    Google Scholar 

  • Ralescu, D., Y. Ogura and S. Li (2001). Set defuzzification e choquet integral. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9, 1–12.

    MathSciNet  Google Scholar 

  • Saag, M. (1995). Diagnóstico laboratorial da AIDS presente e futuro, in Tratamento Clínico da AIDS, 3rd edn., M. Sande and P. A. Volberding (Eds), Revinter, pp. 27–43. (in Portuguese).

  • Sugeno M. (1974). Theory of Fuzzy integrals and its applications, PhD thesis, Tokyo Institute of Technology, Japan.

    Google Scholar 

  • Zadeh, L. (1965). Fuzzy sets. Inf. Control 8, 338–353.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Motta Jafelice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafelice, R.M., de Barros, L.C., Bassanezi, R.C. et al. Fuzzy modeling in symptomatic HIV virus infected population. Bull. Math. Biol. 66, 1597–1620 (2004). https://doi.org/10.1016/j.bulm.2004.03.002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.03.002

Keywords

Navigation