Skip to main content
Log in

Bottom-up excitable models of phytoplankton blooms

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A simple nutrient-phytoplankton model is used to explore the dynamics of phytoplankton blooms. The model exhibits excitable behaviour in the sense that a large scale outbreak can only be triggered when a critical nutrient threshold is exceeded. The model takes into account several features often neglected but whose combined effect proves very important: (i) rapid nutrient recycling associated with the microbial loop and patch formation; (ii) self-shading; and (iii) a bottom-up approach, whereby nutrient levels are responsible for both the triggering and the demise of the bloom. Although the literature is replete with studies of ‘top-down’ models in which zooplankton grazing control the triggering and demise of the bloom, bottom-up models are nevertheless appropriate in many circumstances. We provide a full mathematical investigation of the effects of these three different features in an excitable system framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, N. J. (1995). Naturally eutrophic lakes: reality, myth or myopia? Trends Ecol. Evol. 10, 137–138.

    Article  Google Scholar 

  • Azam, F., B. C. Cho, D. C. Smith and M. Simon (1990). Bacterial cycling of matter in the pelagic zone of aquatic ecosystems, in Large Lakes—Ecological Structure and Function, M. M. Tilzer and C. Serruya (Eds), Berlin: Springer, pp. 477–488.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Gray, L. A. Meyer-Reil and F. Thingstad (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263.

    Google Scholar 

  • Beltrami, E. (1989). A mathematical model of brown tides. Estuaries 12, 13–17.

    Article  Google Scholar 

  • Beltrami, E. and T. O. Carroll (1994). Modeling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32, 857–863.

    Article  MATH  Google Scholar 

  • Clother, D. R. and J. Brindley (1999). Excitabilty of an age-structured plankton ecosystem. J. Math. Biol. 39, 377–420.

    Article  MathSciNet  MATH  Google Scholar 

  • DeAngelis, D. L. (1992). Dynamics of Nutrient Cycling and Food Webs, London: Chapman and Hall.

    Google Scholar 

  • Dugdale, R. C. (1967). Nutrient limitation in the sea: dynamics, identification, and significance. Limnol. Oceanogr. 12, 685–695.

    Article  Google Scholar 

  • Durrett, R. and S. A. Levin (1994). The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394.

    Article  MATH  Google Scholar 

  • Edwards, A. M. and J. Brindley (1996). Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. 11, 347–370.

    MATH  Google Scholar 

  • Edwards, A. M. and J. Brindley (1999). Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol. 61, 303–339.

    Article  Google Scholar 

  • Goldman, J. C. (1984). Oceanic nutrient cycles, in Flows of Energy and Materials in Marine Ecosystems: Theory and Practice, M. J. R. Fasham (Ed.), New York: Plenum Press, pp. 137–1170.

    Google Scholar 

  • Goldman, C. R. and A. J. Horne (1983). Limnology, McGraw-Hill International Book Company.

  • Griffiths, B. M. (1939). Early references to water blooms in British Lakes. Proc. Limn. Soc. London 151, 12–19.

    Google Scholar 

  • Huisman, J. P. and F. J. Weissing (1994). Light-limited growth and competition for light in well-mixed aquatic environments: an elementary model. Ecology 75, 507–520.

    Article  Google Scholar 

  • Huppert, A., B. Blasius and L. Stone (2002). A model of phytoplankton blooms. Am. Nat. 159, 156–171.

    Article  Google Scholar 

  • Kirk, J. T. O. (1994). Light and Photosynthesis in Aquatic Ecosystem, 2nd edn, Cambridge: Cambridge University Press.

    Google Scholar 

  • Martin, A. P. (2003). Phytoplankton patchiness: the role of lateral stirring and mixing. Prog. Ocean. 57, 125–174.

    Article  Google Scholar 

  • May, R. M. (1977). Thresholds and breakpoints in ecosystem with multiplicity of stable states. Nature 269, 471–477.

    Article  Google Scholar 

  • Mitchell, J. G., O. Akira and J. A. Fuhrman (1985). Microzones surrounding phytoplankton form the basis for stratified marine microbial ecosystem. Nature 316, 58–59.

    Article  Google Scholar 

  • Pearsall, W. H. (1932). Phytoplankton in the English Lakes. II. The composition of the phytoplankton in relation to dissolved substance. J. Ecol. 20, 241–261.

    Google Scholar 

  • Pitchford, J. W. (1997). Dynamics of multi-species plankton populations. PhD thesis, University of Leeds.

  • Pitchford, J. W. and J. Brindley (1999). Iron limitation, grazing pressure and oceanic high nutrient-low chlorophyll (HNLC) regions. J. Plank. Res. 21, 525–547.

    Article  Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke and B. Walker (2001). Catastrophic shifts in ecosystems. Nature 431, 591–596.

    Article  Google Scholar 

  • Slobodkin, L. B. (1999). Akira Okubo and the theory of blooms. Oceanography 12, 9–14.

    Google Scholar 

  • Stone, L. and T. Berman (1993). Positive feedback in aquatic ecosystems: The case of microbial loop. Bull. Math. Biol. 55, 919–936.

    Article  MATH  Google Scholar 

  • Stone, L. and R. S. J. Weisburd (1992). Positive feedback in aquatic ecosystems. Trends Ecol. Evol. 7, 263–267.

    Article  Google Scholar 

  • Sukenik, A. et al. (2002). Isreal Oceanographic and Liimnological Annual Research Report.

  • Truscott, J. E. and J. Brindley (1994a). Ocean plankton populations as excitable media. Bull. Math. Biol. 56, 981–998.

    Article  MATH  Google Scholar 

  • Truscott, J. E. and J. Brindley (1994b). Equilibria, stability and excitability in a general-class of plankton population-models. Philos. Trans. R. Soc. Lond. A 347, 703–718.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewi Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huppert, A., Olinky, R. & Stone, L. Bottom-up excitable models of phytoplankton blooms. Bull. Math. Biol. 66, 865–878 (2004). https://doi.org/10.1016/j.bulm.2004.01.003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.01.003

Keywords

Navigation