Skip to main content
Log in

Expansion and contraction of the cytotoxic T lymphocyte response—An optimal control approach

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The kinetics of the cytotoxic T lymphocyte (CTL) response against intracellular pathogens has been found to have many stereotypical features that appear to be programmed early in the infection. We explain these findings here in terms of CTL response kinetics that minimize the probability that a pathological symptom will occur in association with the infection and its eradication. We assume that both the infection and the CTLs contribute to this pathology. We find that contraction kinetics is influenced by the relative pathogenicities of infection and CTLs, as well as on the virulence of the infection and the efficiency of the CTLs, but not by the magnitude of expansion or the dose and duration of infection. Our analysis explains the finding that the duration of the CTL expansion is highly stereotypical, with the maximum expansion of the CTL response dependent on the dose of the infection. Finally, we show that the stereotypical nature of CTL kinetics relies upon stringent regulation of the rates at which CTLs proliferate and die.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander-Miller, M. A. (2000). Differential expansion and survival of high and low avidity cytotoxic T cells populations during the immune response to a viral infection. Cell. Immunol. 201, 58–62.

    Article  Google Scholar 

  • Alexander-Miller, M. A., G. R. Leggatt and J. A. Berzofsky (1996). Selective expansion of high-or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl Acad. Sci. USA 93, 4102–4107.

    Article  Google Scholar 

  • Asquith, B. and C. R. M. Bangham (2000). The role of cytotoxic T lymphocytes in human T-cell Lymphotropic Virus type 1 infection. J. Theor. Biol. 207, 65–79.

    Article  Google Scholar 

  • Badovinac, V. P., B. B Porter and J. T. Harty (2002). Programmed contraction of CD8+ T cells after infection. Nat. Immunol. 3, 619–626.

    Article  Google Scholar 

  • Badovinac, V. P., A. R. Tvinnereim and J. T. Hart (2000). Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1357.

    Article  Google Scholar 

  • Bain, L. J. and M. Engelhardt (1991). Introduction to Probability and Mathematical Statistics, 2nd edn, Boston: PWS-Kent Publishing Company.

    Google Scholar 

  • Bell, E. B., S. M. Sparshott and C. Bunce (1998). CD4+ T-cell memory, CD45R subsets and the persistence of antigen—a unifying concept. Immunol. Today 19, 60–64.

    Article  Google Scholar 

  • van den Berg, H. A., N. J. Burroughs and D. A. Rand (2002). Quatifying the strength of ligand antagonism in TCR triggering. Bull. Math. Biol. 64, 781–808.

    Article  Google Scholar 

  • Blattman, J., L. E. Cheng and P. D. Greenberg (2002). CD8+ T cell responses: It’s all downhill after their prime. Nat. Immunol. 3, 601–602.

    Article  Google Scholar 

  • Boehm, U., T. Klamp, M. Groot and J. C. Howard (1997). Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795.

    Article  Google Scholar 

  • de Boer, R. J., M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed and A. S. Perelson (2001). Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell response to lymphocytic choriomeningitis virus. J. Virol. 75, 10663–10669.

    Google Scholar 

  • Bonhoeffer, S., A. D. Barbour and R. J. de Boer (2002). Procedures for reliable estimation of viral fitness from time-series data. Proc. R. Soc. Lond. B 269, 1887–1893.

    Article  Google Scholar 

  • Busch, D. H. and E. G. Pamer (1999). T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–709.

    Article  Google Scholar 

  • Busch, D. H., I. M. Pilip, S. Vijh and E. G. Pamer (1998). Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 177–187.

    Article  Google Scholar 

  • Butz, E. A. and M. J. Bevan (1998). Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175.

    Article  Google Scholar 

  • Byers, D. E. and K. F. Lindahl (1999). Peptide affinity and concentration affect the sensitivity of M3-restricted CTLs in vitro. J. Immunol. 163, 3022–3028.

    Google Scholar 

  • Cannon, M. J., P. J. M. Openshaw and B. A. Askonas (1988). Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J. Exp. Med. 168, 1163–1168.

    Article  Google Scholar 

  • Ehl, S., P. Klenerman, R. M. Zinkernagel and G. Bocharov (1998). The impact of variation in the number of CD8+ T-cell precursors on the outcome of virus infection. Cell. Immunol. 189, 67–73.

    Article  Google Scholar 

  • Franco, A., C. Ferrari, A. Sette and F. V. Chisari (1995). Viral mutations, TCR antagonism and escape from the immune response. Curr. Opin. Immunol. 7, 524–531.

    Article  Google Scholar 

  • Guidotti, L. G. and F. V. Chisari (2001). Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91.

    Article  Google Scholar 

  • Harty, J. T. and V. P. Badovinac (2002). Influence of effector molecules on the CD8+ T cell response to infection. Curr. Opin. Immunol. 14, 360–365.

    Article  Google Scholar 

  • Hildeman, D. A., Y. Zhu, T. C. Mitchell, J. Kappler and P. Marrack (2002). Molecular mechanisms of activated T cell death in vivo. Curr. Opin. Immunol. 14, 354–359.

    Article  Google Scholar 

  • Hou, S. and P. C. Doherty (1993). Partitioning of responder CD8+ T cells in lymph node and lung of mice with sendai virus pneumonia by LECAM-1 and CD45RB phenotype. J. Immunol. 150, 5494–5500.

    Google Scholar 

  • Kägi, D., B. Ledermann, K. Burki, P. Seiler, B. Odermatt, K. J. Olsen, E. R. Podack, R. M. Zinkernagel and H. Hensgartner (1994). Cytotoxicity mediated by T-cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37.

    Article  Google Scholar 

  • Kägi, D., B. Odermatt and T. W. Mak (1999). Homeostatic regulation of CD8+ T cells by perforin. Eur. J. Immunol. 99, 3262–3272.

    Article  Google Scholar 

  • Karin, M. and A. Lin (2002). NF-κB at the crossroads of life and death. Nat. Immunol. 3, 221–227.

    Article  Google Scholar 

  • Kessler, B., D. Hudrisier, M. Schroeter, J. Tschopp, J.-C. Cerottini and I. F. Luesher (1998). Peptide modification or blocking of CD8, resulting in weak TCR signalling, can activate CTL for Fas but not perforin-dependent cytotoxity or cytokine production. J. Immunol. 161, 6939–6946.

    Google Scholar 

  • Kooijman, S., J. Bedaux, A. Gerritsen, H. Oldersma and A. Hanstveit (1998). Dynamic measures for ecotoxicity, in Risk Assessment: Logic and Measurement, M. Newmann and C. Strojan (Eds), Ann Arbor Pres., pp. 187–224.

  • Kuby, J. (1997). Immunology, third edn, New York: W. H. Freeman and Company.

    Google Scholar 

  • Matloubian, M., M. Suresh, A. Glass, M. Galvan, K. Chow, J. K. Whitmire, C. M. Walsh, W. R. Clark and R. Ahmed (1999). A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol. 73, 2527–2536.

    Google Scholar 

  • Mercado, R., S. Vijh, S. E. Allen, K. Kerksiek, I. M. Pilip and E. G. Pamer (2000). Early programming of T cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839.

    Google Scholar 

  • Moskophidis, D., M. Battegay, M. van den Broek, E. Laine, U. Hofmann-Rohrer and R. M. Zinkernagel (1995). Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus. J. Gen. Virol. 76, 381–391.

    Article  Google Scholar 

  • Moskophidis, D. and D. Kioussis (1998). Contribution of virus-specific CD8+ cytotoxic T cells to virus clearence or pathologic mainfestations of influenza virus infection in a T cell receptor transgenic mouse model. J. Exp. Med. 188, 223–232.

    Article  Google Scholar 

  • Murali-Krishna, K., J. D. Altman, M. Suresh, D. J. D. Sourdive, A. J. Zajac, J. D. Miller, J. Slansky and R. Ahmed (1998). Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187.

    Article  Google Scholar 

  • O’Rourke, A. M. and M. F. Mesher (1992). Cytotoxic T-lymphocyte activation involves a cascade of signalling and adhesion events. Nature 358, 253–255.

    Article  Google Scholar 

  • Orteu, C. H., L. W. Poulter, M. H. A. Rustin, C. A. Sabin, M. Salmon and A. N. Akbar (1998). The role of apoptosis in the resolution of T cell-mediated cutaneous inflammation. J. Immunol. 161, 1619–1629.

    Google Scholar 

  • Parham, P. (2000). The Immune System, New York: Garland Publishing.

    Google Scholar 

  • Perelson, A. S., M. Mirmirani and G. F. Oster (1976). Optimal strategies in immunology. I B-cell differentiation and proliferation. J. Math. Biol. 3, 325–367.

    MathSciNet  MATH  Google Scholar 

  • Pilyugin, S. S. and R. Antia (2000). Modeling immune responses with handling time. Bull. Math. Biol. 62, 869–890.

    Article  Google Scholar 

  • Pinch, E. (1995). Optimal Control and the Calculus of Variations, Oxford Science Publications.

  • Russell, J. H. and T. J. Ley (2002). Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323–370.

    Article  Google Scholar 

  • Segel, L. A. and R. Lev Bar-Or (1999). On the role of feedback in promoting conflicting goals of the adaptive immune system. J. Immunol. 163, 1342–1349.

    Google Scholar 

  • Slifka, M. K., F. Rodriguez and L. Whitton (1999). Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401, 76–79.

    Article  Google Scholar 

  • Škoberne, M., R. Holtappels, H. Hof and G. Geginat (2001). Dynamic antigen presentation patters of Listeria monocytogenes-derive CD8 T cell epitopes in vivo. J. Immunol. 167, 2209–2218.

    Google Scholar 

  • van Stipdonk, M. J. B., E. E. Lemmens and S. P. Schoenberger (2001). Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423–429.

    Google Scholar 

  • Utzny, C. and N. J. Burroughs (2001). Stability of a diverse immunological memory is determined by T cell population dynamics. Bull. Math. Biol. 63, 685–713.

    Article  Google Scholar 

  • Veiga-Fernandes, H., U. Walter, C. Bourgeois, A. McLean and B. Rocha (2000). Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1, 47–53.

    Article  Google Scholar 

  • Wodarz, D. and M. A. Nowak (2000). Immune responses and viral phenotype: do replication rate and cytopathogenicity influence virus load? J. Theor. Med. 2, 113–127.

    MATH  Google Scholar 

  • Wong, P. and E. G. Pamer (2001). Cutting edge: antigen-independent CD8 T cell proliferation. J. Immunol. 166, 5864–5868.

    Google Scholar 

  • Zeh, H. J. III, D. Perry-Lalley, M. E. Dudley, S. A. Rosenberg and J. C. Yang (1999). High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J. Immunol. 162, 989–994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Antonius van den Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, H.A., Kiselëv, Y.N. Expansion and contraction of the cytotoxic T lymphocyte response—An optimal control approach. Bull. Math. Biol. 66, 1345–1369 (2004). https://doi.org/10.1016/j.bulm.2004.01.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.01.001

Keywords

Navigation