Skip to main content
Log in

A calcium-based phantom bursting model for pancreatic islets

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Insulin-secreting β-cells, located within the pancreatic islets of Langerhans, are excitable cells that produce regular bursts of action potentials when stimulated by glucose. This system has been the focus of mathematical investigation for two decades, spawning an array of mathematical models. Recently, a new class of models has been introduced called ‘phantom bursters’ [Bertram et al. (2000) Biophys. J. 79, 2880–2892], which accounts for the wide range of burst frequencies exhibited by islets via the interaction of more than one slow process. Here, we describe one implementation of the phantom bursting mechanism in which intracellular Ca2+ controls the oscillations through both direct and indirect negative feedback pathways. We show how the model dynamics can be understood through an extension of the fast/slow analysis that is typically employed for bursting oscillations. From this perspective, the model makes use of multiple degrees of freedom to generate the full range of bursting oscillations exhibited by β-cells. The model also accounts for a wide range of experimental phenomena, including the ubiquitous triphasic response to the step elevation of glucose and responses to perturbations of internal Ca2+ stores. Although it is not presently a complete model of all β-cell properties, it demonstrates the design principles that we anticipate will underlie future progress in β-cell modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainscow, E. K. and G. A. Rutter (2002). Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet β-cells. Diabetes 51, S162–S170.

    Google Scholar 

  • Arredouani, A., J.-C. Henquin and P. Gilon (2002a). Contribution of the endoplasmic reticulum to the glucose-induced [Ca2+]c response in mouse pancreatic islets. Am. J. Physiol. 1330, E982–E991.

    Google Scholar 

  • Arredouani, A. et al. (2002b). SERCA3 ablation does not impair insulin secretion but suggests distinct roles of different sarcoendoplasmic reticulum Ca2+ pumps for Ca2+ homeostasis in pancreatic β-cells. Diabetes 51, 3245–3253.

    Google Scholar 

  • Ashcroft, F. M., D. E. Harrison and S. J. H. Ashcroft (1984). Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312, 446–448.

    Article  Google Scholar 

  • Atwater, I., C. M. Dawson, A. Scott, G. Eddlestone and E. Rojas (1980). The nature of the oscillatory behavior in electrical activity for pancreatic β-cells, in Biochemistry and Biophysics of the Pancreatic β-cell, G. Thieme (Ed.), New York: Verlag, pp. 100–107.

    Google Scholar 

  • Bergsten, P. (1995). Slow and fast oscillations of cytoplasmic Ca2+ in pancreatic islets correspond to pulsatile insulin release. Am. J. Physiol. 268, E282–E287.

    Google Scholar 

  • Bergsten, P., E. Grapengiesser, E. Gylfe, A. Tengholm and B. Hellman (1994). Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol. Chem. 269, 8749–8753.

    Google Scholar 

  • Berridge, M. J. and R. F. Irvine (1989). Inositol phosphates and cell signalling. Nature 341, 197–205.

    Article  Google Scholar 

  • Bertram, R., J. Previte, A. Sherman, T. A. Kinard and L. S. Satin (2000). The phantom burster model for pancreatic β-cells. Biophys. J. 79, 2880–2892.

    Google Scholar 

  • Bertram, R., P. Smolen, A. Sherman, D. Mears, I. Atwater, F. Martin and B. Soria (1995). A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic β-cells. Biophys. J. 68, 2323–2332.

    Google Scholar 

  • Bordin, S., A. C. Boschero, E. M. Carneiro and I. Atwater (1995). Ionic mechanisms involved in the regulation of insulin secretion by muscarinic agonists. J. Membrane Biol. 148, 177–184.

    Article  Google Scholar 

  • Bozem, M. and J. C. Henquin (1988). Glucose modulation of spike activity independently from changes in slow waves of membrane potential in mouse β-cells. Pflügers Arch. 413, 147–152.

    Article  Google Scholar 

  • Chay, T. R. (1996). Electrical bursting and luminal calcium oscillation in excitable cell models. Biol. Cybern. 75, 419–431.

    Article  MATH  Google Scholar 

  • Chay, T. R. (1997). Effects of extracellular calcium on electrical bursting and intracellular and luminal calcium oscillations in insulin secreting pancreatic β-cells. Biophys. J. 73, 1673–1688.

    Google Scholar 

  • Chay, T. R. and J. Keizer (1983). Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–190.

    Google Scholar 

  • Chou, H.-F. and E. Ipp (1990). Pulsatile insulin secretion in isolated rat islets. Diabetes 39, 112–117.

    Google Scholar 

  • Chow, R. H., P.-E. Lund, S. Löser, U. Panten and E. Gylfe (1995). Coincidence of early glucose-induced depolarization with lowering of cytoplasmic Ca2+ in mouse pancreatic β-cells. J. Physiol. (Lond.) 485, 607–617.

    Google Scholar 

  • Clapham, D. E. (1995). Calcium signalling. Cell 80, 259–268.

    Article  Google Scholar 

  • Cook, D. L., W. E. Crill and D. Porte Jr. (1981). Glucose and acetylcholine have different effects on the plateau pacemaker of pancreatic islet cells. Diabetes 30, 558–561.

    Google Scholar 

  • Cook, D. L. and M. Ikeuchi (1989). Tolbutamide as mimic of glucose on β-cell electrical activity: ATP-sensitive K+ channels as common pathway for both stimuli. Diabetes 38, 416–421.

    Google Scholar 

  • Cook, D. L. and E. Perara (1982). Islet electrical pacemaker response to alpha-adrenergic stimulation. Diabetes 31, 985–990.

    Google Scholar 

  • Dean, P. M. and E. K. Mathews (1970). Glucose-induced electrical activity in pancreatic islet cells. J. Physiol. (Lond.) 210, 255–264.

    Google Scholar 

  • Detimary, P., P. Gilon and J.-C. Henquin (1998). Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem. J. 333, 269–274.

    Google Scholar 

  • Dryselius, S., P.-E. Lund, E. Gylfe and B. Hellman (1994). Variations in ATP-sensitive K+ channel activity provide evidence for inherent metabolic oscillations in pancreatic β-cells. Biochem. Biophys. Res. Commun. 205, 880–885.

    Article  Google Scholar 

  • Ermentrout, G. B. (2002). Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, Philadelphia: SIAM Books.

    MATH  Google Scholar 

  • Fridlyand, L. E., N. Tamarina and L. H. Philipson (2003a). Role of Na+ and signaling molecules in regulation of slow Ca2+ dynamics in pancreatic β-cells: a computational study. Diabetes 52, A368.

    Google Scholar 

  • Fridlyand, L. E., N. Tamarina and L. H. Philipson (2003b). Modeling of Ca2+ flux in pancreatic β-cells: role of the plasma membrane and intracellular stores. Am. J. Physiol. (Endocrinol Metab) 285, E138–154.

    Google Scholar 

  • Gilon, P., A. Arredouani, P. Gailly, J. Gromada and J.-C. Henquin (1999). Uptake and release of Ca2+ by the endoplasmic reticulum contribute to the oscillations of the cytosolic Ca2+ concentration triggered by Ca2+ influx in the electrically excitable pancreatic β-cell. J. Biol. Chem. 274, 20197–20205.

    Google Scholar 

  • Gilon, P. and J.-C. Henquin (2001). Mechanisms and physiological significance of the cholinergic control of pancreatic β-cell function. Endocrine Rev. 22, 565–604.

    Article  Google Scholar 

  • Goforth, P. B., R. Bertram, F. A. Khan, M. Zhang, A. Sherman and L. S. Satin (2002). Calcium-activated K+ channels of mouse β-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies. J. Gen. Physiol. 120, 307–322.

    Article  Google Scholar 

  • Grodsky, G. M. (1989). A new phase of insulin secretion. How will it contribute to our understanding of β-cell function? Diabetes 38, 673–678.

    Google Scholar 

  • Henquin, J. C. (1998). A minimum of fuel is necessary for tolbutamide to mimic the effects of glucose on electrical activity in pancreatic β-cells. Endocrinology 139, 993–998.

    Article  Google Scholar 

  • Keizer, J. and G. Magnus (1989). ATP-sensitive potassium channel and bursting in the pancreatic β cell. Biophys. J. 56, 229–242.

    Google Scholar 

  • Keizer, J. and P. Smolen (1991). Bursting electrical activity in pancreatic β cells caused by Ca2+-and voltage-inactivated Ca2+ channels. Proc. Natl. Acad. Sci. USA 88, 3897–3901.

    Article  Google Scholar 

  • Kennedy, R. T., L. M. Kauri, G. M. Dahlgren and S.-K. Jung (2002). Metabolic oscillations in β-cells. Diabetes 51, S152–S161.

    Google Scholar 

  • Kinard, T. A., G. de Vries, A. Sherman and L. S. Satin (1999). Modulation of the bursting properties of single mouse pancreatic β-cells by artificial conductances. Biophys. J. 76, 1423–1435.

    Google Scholar 

  • Krippeit-Drews, P., M. Dufer and G. Drews (2000). Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic β-cells. Biochem. Biophys. Res. Commun. 267, 179–183.

    Article  Google Scholar 

  • Lang, D. A., D. R. Matthews, M. Burnett and R. C. Turner (1981). Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes 30, 435–439.

    Google Scholar 

  • Larsson, O., H. Kindmark, R. Bränström, B. Fredholm and P.-O. Berggren (1996). Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic β-cell. Proc. Natl. Acad. Sci. USA 93, 5161–5165.

    Article  Google Scholar 

  • Li, Y.-X. and J. Rinzel (1994). Equations for InsP3 receptor-mediated [Ca2+] oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166, 461–473.

    Article  Google Scholar 

  • Liu, Y.-J., E. Grapengiesser, E. Gylfe and B. Hellman (1995). Glucose induces oscillations of cytoplasmic Ca2+, Sr2+ and Ba2+ in pancreatic β-cells without participation of the thapsigargin-sensitive store. Cell Calcium 18, 165–173.

    Article  Google Scholar 

  • Liu, Y.-J., A. Tengholm, E. Grapengiesser, B. Hellman and E. Gylfe (1998). Origin of slow and fast oscillations of Ca2+ in mouse pancreatic islets. J. Physiol. (Lond.) 508, 471–481.

    Article  Google Scholar 

  • Longo, E. A., K. Tornheim, J. T. Deeney, B. A. Varnum, D. Tillotson, M. Prentki and B. E. Corkey (1991). Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J. Biol. Chem. 266, 9314–9319.

    Google Scholar 

  • Magnus, G. and J. Keizer (1997). Minimal model of β-cell mitochondrial Ca2+ handling. Am. J. Physiol. 273, C717–C733.

    Google Scholar 

  • Martín, F. and B. Soria (1995). Amino acid-induced [Ca2+]i oscillations in single mouse pancreatic islets. J. Physiol. (Lond.) 486, 361–371.

    Google Scholar 

  • Matthews, D. R., B. A. Naylor, R. G. Jones, G. M. Ward and R. C. Turner (1983). Pulsatile insulin secretion has greater hypoglycemic effect than continuous delivery. Diabetes 32, 617–621.

    Google Scholar 

  • Mears, D. and C. Zimliki (2003). Muscarinic agonists activate Ca2+ store-operated and-independent ionic currents in insulin-secreting HIT-T15 cells and mouse pancreatic β-cells. J. Membrane Biol. (in press).

  • Meissner, H. P. and I. J. Atwater (1976). The kinetics of electrical activity of beta cells in response to a square wave stimulation with glucose or glibenclamide. Horm. Metab. Res. 8, 11–16.

    Google Scholar 

  • Miura, Y., P. Gilon and J.-C. Henquin (1996). Muscarinic stimulation increases Na+ entry in pancreatic B-cells by a mechanism other than the emptying of intracellular Ca2+ pools. Biochem. Biophys. Res. Commun. 224, 67–73.

    Article  Google Scholar 

  • Miura, Y., J.-C. Henquin and P. Gilon (1997). Emptying of intracellular Ca2+ stores stimulates Ca2+ entry in mouse pancreatic β-cells by both direct and indirect mechanisms. J. Physiol. (Lond.) 503, 387–398.

    Article  Google Scholar 

  • Nilsson, T., V. Schultz, P.-O. Berggren, B. E. Corkey and K. Tornheim (1996). Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic β-cells. Biochem. J. 314, 91–94.

    Google Scholar 

  • O’Meara, N. M., J. Sturis, J. D. Blackman, M. M. Byrne, J. B. Jaspan, J. R. Thistlethwaite and K. S. Polonsky (1993). Oscillatory insulin secretion after pancreas transplant. Diabetes 42, 855–861.

    Google Scholar 

  • Rinzel, J. (1985). Bursting oscillations in an excitable membrane model, in Ordinary and Partial Differential Equations, B. D. Sleeman and R. J. Jarvis (Eds), Lecture Notes in Mathematics 1151, Berlin: Springer, pp. 304–316.

    Google Scholar 

  • Roe, M. W., M. E. Lancaster, R. J. Mertz, J. F. Worley III and I. D. Dukes (1993). Voltage-dependent intracellular calcium release from mouse islets stimulated by glucose. J. Biol. Chem. 268, 9953–9956.

    Google Scholar 

  • Roe, M. W., L. H. Philipson, C. J. Frangakis, A. Kuznetsov, R. J. Mertz, M. E. Lancaster, B. Spencer, J. F. Worley III and I. D. Dukes (1994). Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J. Biol. Chem. 269, 18279–18282.

  • Roe, M. W., J. F. Worley III, F. Qian, N. Tamarina, A. A. Mittal, F. Dralyuk, N. T. Blair, R. J. Mertz, L. H. Philipson and I. D. Dukes (1998). Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived β-cells. J. Biol. Chem. 273, 10402–10410.

  • Sánchez-Andrés, J., A. Gomis and M. Valdeolmillos (1995). The electrical activity of mouse pancreatic β-cells recorded in vivo shows glucose-dependent oscillations. J. Physiol. (Lond.) 486, 223–228.

    Google Scholar 

  • Santos, R. M. and E. Rojas (1989). Muscarinic receptor modulation of glucose-induced electrical activity in mouse pancreatic B-cells. FEBS Lett. 249, 411–417.

    Article  Google Scholar 

  • Santos, R. M., L. M. Rosario, A. Nadal, J. Garcia-Sancho, B. Soria and M. Valdeolmillos (1991). Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflügers Arch. 418, 417–422.

    Article  Google Scholar 

  • Shorten, P. R. and D. J. Wall (2000). A Hodgkin-Huxley model exhibiting bursting oscillations. Bull. Math. Biol. 62, 695–715.

    Article  Google Scholar 

  • Smolen, P. and J. Keizer (1992). Slow voltage inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic β-cell. J. Membrane Biol. 127, 9–19.

    Article  Google Scholar 

  • Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci. 2, 135–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Tornheim, K. (1997). Are metabolic oscillations responsible for normal oscillatory secretion? Diabetes 46, 1375–1380.

    Google Scholar 

  • Valdeolmillos, M., A. Gomis and J. V. Sánchez-Andrés (1996). In vivo synchronous membrane potential oscillations in mouse pancreatic β-cells: lack of co-ordination between islets. J. Physiol. (Lond.) 493, 9–18.

    Google Scholar 

  • Woods, S. C. and D. Porte Jr. (1974). Neural control of the endocrine pancreas. Physiol. Rev. 54, 596–619.

    Google Scholar 

  • Worley, J. F. III, M. S. McIntyre, B. Spencer, R. J. Mertz, M. W. Roe and I. D. Dukes (1994). Endoplasmic reticulum calcium store regulates membrane potential in mouse islet β-cells. J. Biol. Chem. 269, 14359–14362.

  • Zhang, M., P. Goforth, R. Bertram, A. Sherman and L. Satin (2003). The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys. J. 84, 2852–2870.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bertram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, R., Sherman, A. A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol. 66, 1313–1344 (2004). https://doi.org/10.1016/j.bulm.2003.12.005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.12.005

Keywords

Navigation