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In contrast to their name, biofilms are not always flat and homogeneous but instead
often exhibit complex structural heterogeneity. It has been suggested that nonho-
mogeneous geometry is selected in order to increase biofilm growth rate. A previ-
ous study (Dockery and Klapper (2002)SIAM J. Appl. Math., 62, 853–869) of a
model biofilm system in a static bulk fluid demonstrated that under some circum-
stances a flat biofilm–bulk fluid interface is linearly unstable to perturbation due to
growth induced forces. Computations indicated that subsequent nonlinear evolu-
tion results in fingers and mushrooms of biofilm similar to structures observed in
actual biofilms. However, the important complementary issue of biological func-
tionality was not considered. Here a weakly nonlinear analysis of the simple grow-
ing biofilm layer model in Dockery and Klapper (2002,SIAM J. Appl. Math., 62,
853–869) is presented. It is argued that, at least in the case of biofilms free of exter-
nal mechanical stress, overall growth is in fact generally inhibited by the presence
of growing perturbations in the linear stage. Hence a more complex explanation of
function is necessary.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

A biofilm is a hydrated collection of microorganisms concentrated together in
a self-secreted matrix of extracellular polymeric substances (EPS). Biofilms are
nearly ubiquitous in damp and wet environments, and, in fact, the majority of bacte-
ria in natural and pathogenic systems are located within biofilm systems (Costerton
et al., 1987, 1999). Examples include, among many others, pipe scum in water and
industrial systems, dental plaque, algal mats, and waste-water treatment systems.
Biofilm presence has important medical consequences; they are responsible for
chronic infections such as gum disease, recurring ear infections, lung infections in
sufferers of cystic fibrosis, and skin infections in severe burn victims, again among
many other examples. SeeCosterton(1995), Breyers(2000) andStoodleyet al.
(2002) for an overview. Biofilms demonstrate a variety of remarkable behaviors
including complex responses to environmental conditions though little is known
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Figure 1. Confocal image ofStreptococcus mutans biofilm grown in a drip flow reactor as
in Heersinket al. (2003). The main panel is a plan view (350µm2); the side and bottom
panels are vertical cross-sections through the biofilm of the plan view cut in, respectively,
the top–bottom and left–right directions.S. mutans is anearly colonizer of teeth and is
one of the causative agents of caries through acid production. Image supplied courtesy
of Joanna Heersink and Paul Stoodley, Center for Biofilm Engineering, Montana State
University.

about their mechanical and chemical properties. Yet an understanding of form and
function of biofilm structure is essential for progress in important problems like
biofilm control.

Biofilms are observed to exhibit heterogeneous morphologies in general
(Fig. 1). How and why spatial nonuniformities develop is not understood. Var-
ied explanations have been proposed for formation of structures such as mush-
rooms and channels including chemical, hydrodynamical, and mechanical mecha-
nisms. As mechanical forces will always be present regardless, it seems a useful
exercise to study consequences of mechanics in the absence of other influences.
A number of modeling attempts have essentially taken this point of view (Wanner
and Riechert, 1996; Wimpenny and Colasanti, 1997; Heijnen et al., 1998; Wood
and Whitaker, 1999; Picioreanu, 2000; Eberle et al., 2001; Hermanowicz, 2001;
Kreft and Wimpenny, 2001; Dockery and Klapper, 2002; Cogan, 2003). In an
earlier paper (Dockery and Klapper, 2002) (hereafter referred to as DK02), it was
argued using a rather general continuum mechanics model that internally generated
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Figure 2. Cartoon of a biofilm–bulk fluid system. Bulk fluid flow above the biofilm–bulk
fluid interface provides a source of substrates for the biofilm as well as imparting mechani-
cal stress. Individual entangled EPS polymer chains are depicted within the biofilm matrix
[after Koerstgenset al. (2001)].

mechanical stress from growth alone can explain at least some aspects of biofilm
structure formation. Other investigators have reached the same conclusion using
cellular automata based methods. This paper, a sequel to DK02, focuses on one key
consequence of biofilm structure in the same simplified setting of absence of exter-
nally imposed mechanical stress—are biofilm fingers and mushrooms favorable for
biofilm growth?

Biofilms are often found as a thin layer attached to a solid substratum within
a dynamic aqueous environment, the bulk fluid (Fig. 2). Nutrients (substrates)
are delivered to the biofilm from the bulk fluid, typically through a combina-
tion of advection and diffusion. The bulk fluid also interacts mechanically with
the biofilm through transmitted shear stress. This influence is complex; biofilms
appear to behave as viscoelastic fluids (Klapperet al., 2002; Towleret al., in press).
Conversely, despite the extreme thinness of biofilms, their viscoelastic response
can have dramatic effects on the bulk fluid flow (Schultz and Swain, 1999).
Detailed understanding of biofilm material properties and their consequences are
lacking at the current time. However, the analysis presented here restricts to the
case of static or nearly static bulk fluid and thus direct consequences of shear stress
conveyance and associated viscoelastic response are avoided. A second conse-
quence of this simplification is that substrates are delivered through the bulk fluid
diffusively only. Layer thicknesses are generallyO(102 µm) or less. Within the
biofilm, microorganisms gain access to substrates through diffusion, usually from
the bulk fluid. On the laboratory timescale, diffusion overO(102 µm) lengths is
fast. Nevertheless, despite the layer thinness, certain substrates may be consumed
before penetration through the entire biofilm can occur (Wentlandet al., 1996; Xu
et al., 1998). In this case an active layer is formed adjacent to the biofilm–bulk
fluid interface in the region where a limiting substrate is still available before being
largely depleted further into the biofilm. Below this layer, little activity occurs. In
DK02, a linear analysis of a continuum biofilm model indicated that a flat biofilm
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interface could be subject to growth induced instabilities on wavelengths of the
lengthscale of the active layer depth. Computational investigation of the nonlin-
ear evolution of these instabilities showed formation of finger and mushroom-like
structures extending into the bulk fluid. Similar structures are often observed in
actual biofilms, provoking obvious questions of biological function. For example,
does the increased surface area of a fingered biofilm–bulk fluid interface promote
overall growth rate? Numerical studies of several models seem to indicate not.
It is argued here that, within the linear regime and in the absence of significant
advective flow in the bulk fluid, interface structure generally does not enhance
overall biofilm growth but on the contrary would seem to suppress it somewhat.
As mentioned, numerics of various models have already supported that conclu-
sion in the nonlinear regime. The analysis presented in DK02 fails to address
this question because in the linear theory, mean growth is unchanged to first order
by an interface perturbation. Hence a second order analysis becomes necessary.
In passing it is noted that a weakly nonlinear analysis of a related tumor growth
model was performed inByrne (1999) with the purpose of identifying nontrivial
steady solutions. In fact, the biofilm model presented in DK02 bears similarities to
a number of tumor growth models (Greenspan, 1974, 1975; Chaplain et al., 1995;
Byrne, 1999).

It should be stated that the presence of nonnegligible advective transport may
effect the conclusions presented here. Delivery of substrate deep into the biofilm
through advection may very well be an important factor in biofilm growth in those
biofilms exposed to such flows, possibly sufficiently important so as to change
some of the conclusions of this paper in such cases. However, such flow can also
be expected to exert significant mechanical stress on the biofilm, stress that might
exert as important or more important an influence on biofilms as advective delivery
of substrates. Biofilm mechanics are not sufficiently understood at this moment to
be included in the present model and hence this regime is beyond consideration
here.

2. THE MODEL

2.1. The model equations. We rely on a continuum model [dating at least to
Greenspan’s tumor growth models (Greenspan, 1974, 1975)] consisting of a bio-
film matrix of EPS plus microorganisms of densityρ(x, t) and velocityv(x, t)
together with a growth source depending on a single limiting substrate concentra-
tion S(x, t). Space is divided into 2 regions: a biofilm regionWB and a bulk fluid
regionWF (Fig. 3). For the purposes of the small perturbations considered in this
paper it is allowable to assume that the biofilm–bulk fluid interface can be repre-
sented in the formz = h(x, y, t). Within the bulk fluid, S diffuses and (in gen-
eral) advects; within the biofilmS diffuses, (in general) advects, and is consumed
according to a usage functionu(S). Due to the fact that the evolution timescale of
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Figure 3. Slab of biofilm (regionWB ) below the bulk fluid (region WF ). The biofilm
extends toz = −∞. The extent of the bulk fluid regionWF in z is finite.

the biofilm (hours) is extremely long compared to the diffusive timescale (seconds),
at any given instant one can assume that the substrate concentration is at equilib-
rium. Also, for the very small velocities to be considered here, advective effects
can be disregarded. Under these approximations, in nondimensional form the sub-
strate concentration diffusion equation takes the form (DK02):

∇2S =
{

0 bulk flowregion
Gu(S) biofilm region.

(1)

G = L2u(S∞)/κS∞ is a nondimensional parameter measuring, roughly, the
square of the ratio of the system lengthscaleL to the biofilm active layer depth
κS∞/u(S∞), thedepth to which substrate can penetrate before being appreciably
consumed.S∞ is a representative value ofS, say the boundary condition onS at
the top of the bulk fluid region, andκ is the substrate diffusivity within the biofilm.
LargeG corresponds to, for example, low substrate level. Note that substrate dif-
fusivity generally differs between bulk fluid and biofilm; however the difference
is not large [typically 1< κbulkκ

−1
biofilm < 5 depending on the physical properties

of the substrate and also on details of the biofilm geometry and structure (Stewart,
2003)] and only a more substantial variation inκ would have a qualitative effect on
the results reported here. Hence for simplicity it will be assumed that diffusivity
is constant throughout the entire domain. Completing the boundary and interface
conditions, note that substrate concentrationS satisfies no flux conditions at the
bottom of the biofilm region and continuity conditions at the interface between
biofilm and bulk fluid, i.e.,[S] = [∇S · n] = 0. Also, for later use, define a
second nondimensional parameterF = �(u(S∞)/κS∞)1/2, where� is a character-
istic depth of the substrate boundary layer inWF adjacent to the biofilm interface.
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Figure 4. Shaded region is biofilm and unshaded region is bulk fluid. If distances are
scaled by the system sizeL then the active biofilm layer is approximately of depthG−1/2.
Across the interface from the biofilm is a bulk fluid boundary layer through which substrate
diffuses; this layer has depth�/L = FG−1/2, i.e., F is the ratio of the substrate boundary
layer depth to the biofilm active layer depth. Above the substrate boundary layer resides
bulk fluid with full value of substrate concentration.

F measures the ratio of the bulk fluid region boundary layer depth to the active
region depth and is related toG by F = (�/L)

√
G (Fig. 4). In the case of an

unstable perturbation to the biofilm–bulk fluid interface, as will be discussed later,
the most unstable wavelengthk−1 is proportional to the active layer depth. Hence
in the unstable regime,F also measures the ratio of the bulk fluid boundary layer
depth to the instability lengthscale.

We regard biofilm as a matrix of densityρ contained in a bath of mostly water
(biofilms are generally 90% or more water by mass or volume). Consumption of
substrate results in growth of new biofilm matrix at a source rate given by a function
g(u(S)). Thus withinWB

ρt + ∇ · (ρv) = ρg. (2)

Though there is evidence that matrix densityρ varies in response to environment, in
the present context of slow growth and steady environmental conditions we assume
thatρ is constant, i.e., the biofilm matrix is incompressible, so that∇ · v = g.

Typical choices foru and g are g(u) = βu and u(S) = αS (linear kinetics)
or u(S) = αS(β + S)−1 (Monod kinetics) but in factu and g are unknown and
may be expected to vary from one biofilm system to another. As substrate-limiting
environments are most relevant to interface fingering instabilities of the form con-
sidered here (see DK02), we will later simplify by taking the linear approximations
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to u andg aroundS = 0, i.e.,u(S) = S, g(u) = u = S (noting that the coefficients
α andβ can be scaled to 1 without loss of generality). More generallyg might take
the formg(u(S)) = S − γ whereγ is a death rate parameter, but the presence or
absence of this extra term does not affect the results reported here.

The momentum equation inWB takes the usual form

(ρv)t + ∇ · (ρv ⊗ v) = ∇ ·σ (3)

whereσ is the stress tensor for the biofilm matrix. The inertial term∇ · (ρv ⊗ v)

can be neglected here, while the noninertial stressσ can be broken into 4 pieces

σ = σ h + σ d + σp + σ b

whereσ h is the hydrostatic pressure stress,σ d is the deviatoric viscoelastic stress
[seeKlapperet al. (2002)], σp is the osmotic matrix pressure, andσ b is Brownian
friction stress. We assume due to the thinness of the biofilm layer [O(102 µm)]
and slow growth time [O(104 s)] that hydrostatic pressure disturbances equilibrate
on timescales much shorter than those of interest and henceσ h can be neglected.
Similarly, σ d can be argued to be negligible relative toσ b as follows: first, since
the biofilm growth time [O(104 s)] is largecompared to the elastic relaxation time
[O(102 s), seeKlapper et al. (2002)] then the elastic component ofσ d is unim-
portant. Second, to compare the frictional stresses contributed byσ d andσ b, note
that the systematic growth induced biofilm velocities are of order(biofilm height/
growth time) ∼ 10−4 cm/104 s = 10−8 cm s−1 whereas the fluctuating Brownian
velocities are of order

√
kT ∼ 10−6cm s−1 with shorter spatial scales. Thusσ d

can be neglected in favor ofσ b. However,over time, stress fromσ b averages to
0 whereas osmotic pressure will increase as biofilm matrix is produced by new
growth untilσp is significant relative toσ b and soσp should not be disregarded. If
then we integrate over a time long compared to Brownian motion time correlations
but short compared to growth time, without trying to rigorously justify, we assume
that we obtain a Darcy’s law

v = α∇ · σp = −α∇p (4)

for some proportionality constantα, wherep is the osmotic pressure. Combined
with incompressibility this implies

α∇2p = −g. (5)

In the absence of flow inWF we can setp = 0 at the interface. Also (4) requires
dp/dn = 0 at thebottom of the biofilm region.

Cogan(2003) used a similar model except with a Navier–Stokes stress balance
µ∇2v = α∇ p instead of the Darcy’s law (4). Results of the linear analysis for that
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model are qualitatively similar to those in DK02. Use of the Navier–Stokes balance
would also not qualitatively affect the weakly nonlinear analysis presented here.
The reason for this is that biofilm evolution in this model is mainly determined
by the substrate profileS(x, t) [which in turn determines the growth profileg(S)]
together with incompressibility∇ · v = g. Both areindependent of the stress
balance equation.

To complete the model system, given the pressure profilep the biofilm interface
moves at velocity−α∇ p · n wheren is the unit normal out ofWB . Note that (5)
implies thatp is proportional toα−1 and thus thatv (and the interface velocity) is
independent ofα. Henceα can be removed from the problem. Having done so, the
interfacez = h moves according to

∇2 p = −g (6)

dh

dt
= −(∇ p · n)(ẑ · n) (7)

whereẑ is a unit vector in thez-direction.
For simplicity the depth of the biofilm regionWB is allowed to be infinite. Results

for the infinite depth biofilm are close to those for a finite depth biofilm as long as
the depth of the finite biofilm is sufficiently large compared to the depth
(u(S∞)/κS∞)−1/2 of the active region (see DK02), a reasonable assumption for
a typical 100µm deep biofilm in substrate limited conditions.

2.2. Zeroth and first order results. One dimensional (1D) solutions and their
linear stability analysis for the system (1), (6) and (7) were presented in DK02.
Those results are briefly summarized here. First, if initial conditions depend only
on z then the solution of the biofilm equations remains one dimensional for all later
times. If it is assumed that a renewable substrate source lies above the top of a bulk
fluid regionWF and thus thatWF as a whole comprises a substrate boundary layer
with a constant in time thicknessL (in nondimensional units, i.e., scaled by a sys-
tem lengthscaleL) then 1D solutions take the formh = h(0)(t) = h(0)(0) + ct
for a particularc, S = S(0)(z, t) = S(0)(z − h(0)(t)), and p = p(0)(z, t) =
p(0)(z − h(0)(t)), i.e., the interface velocity is constant and the substrate and pres-
sure profiles are steady in the frame moving with the interface. Also, it was shown
that this zeroth order solution is linearly unstable to small initial perturbations
h(x, y, 0) = h(0)(0) + (H1eik·x + c.c.), k = (k1, k2), x = (x, y), of the inter-
face for sufficiently large values of the dimensionless numberG.

However, the linear analysis presented in DK02 was unable to address at least one
important issue, namely the question of how nonuniform structure affects mean
biofilm growth. Does an interface help or hinder uptake and usage of substrate?
In order to preserve biomass, the initial perturbation toh necessarily must have
zero mean displacement. To first order, this initial condition is preserved for all
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later times in all quantities including, notably, total growth of new biofilm matrix.
In particular, to first order∫

WB

g dx =
∫

WB

(g(0) + g(1))dx =
∫

WB

g(0)dx

whereg(0), g(1) are defined byg(u(S(0) + S(1))) ∼= g(u(S(0))) + g′(u(S(0)))S(1) ≡
g(0) + g(1), and S(1) is the first order correction to substrate density. Thus from
the point of view of total biofilm growth, linear analysis is neutrally stable and
therefore it becomes necessary to extend to second order to address the question of
effect of fingering structure on biofilm growth.

Hence we consider a second order analysis in the following section in order to
address this question. The nature of the analysis differs from many weakly nonlin-
ear studies, e.g.,Ermentrout (1991), in that the important nonlinearity in the system
is due to the moving interface and not due to nonlinear terms in the actual equations
(or boundary conditions). In fact the most relevant regime is that of low substrate
concentration for which one can safely replace the usage and growth functions
u, g, by linear approximations. In this case the model equations themselves are
in fact linear and the only nonlinearity occurs due to the interface. As mentioned
previously, for simplicity and clarity this assumption will be made throughout the
remainder of the paper, in particular we setu(S) = S, g(u) = u. Having done so it
is then possible, see DK02, to explicitly calculate the solutions to (1), (6) and (7).

In particular, at zeroth order

S(0)(z, t) =




1 − F

1 + F
(1 − L−1(z − h(0))) h(0) < z < h(0) + L

1

1 + F
exp[−√

G(h(0) − z)] z < h(0)

(8)

p(0)(z, t) = G−1 1

1 + F
(1 − exp[−√

G(h(0) − z)]) z < h(0) (9)

dh(0)

dt
= G−1/2 1

1 + F
(10)

and first order,

S(1)(z, t) =




− 1

1 + F

G

k + κ tanh(kL)

sinh[kL(1 − L−1(z − h(0)))]
cosh[kL] h(1)(t) h(0) < z < h(0) + L

− 1

1 + F

G tanh(kL)

k + κ tanh(kL)
exp[−κ(h(0) − z)]h(1)(t) −∞ < z < h(0)

p(1)(z, t) = 1

1 + F

(
1 +

√
G tanh(kL)

k + κ tanh(kL)
(e−(κ−k)(h(0)−z) − 1)

)
e−k(h(0)−z)

√
G

h(1)(t) z < h(0)

dh(1)

dt
= 1

1 + F

(
1 − k√

G
− G tanh(kL)

(k + κ)(k + κ tanh(kL))

)
h(1) ≡ λ(k)h(1)
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whereκ2 = k2 + G. For sufficiently largeG the perturbationh(1) grows expo-
nentially for some values ofk. It is easily checked that the maximum growth rate
occurs atk = O(

√
G). In fact, settingλ′(k) = 0 results in

0 = − 1√
G

+ G tanh(kL)(1 + tanh(kL))

κ(k + κ tanh(kL))2
+ GL

cosh2(kL)

× κ tanh(kL)(k + κ tanh(kL)) − 1

k + κ tanh(kL)
. (11)

Now, writing kL = (k/
√

G)(
√

GL) and settingkmax = Cmax

√
G, then asG

increases we find after some algebra thatkmax solves (11) up to an exponentially
small correction inF = √

GL where Cmax
∼= 0.3268 is the solution of the

equation
√

1 + C2
max(Cmax +√

1 + C2
max)

2 = 2. For this value ofkmax, we obtain
λmax

∼= 0.1472, nearly independent ofG for G sufficiently large thatF is larger
thanO(1) for fixed L.

3. SECOND ORDER ANALYSIS

We extendthe linear analysis described in the previous section to second order,
i.e., quadratic interactions. The interface and field quantities now take the form

h ∼= h(0) + h(1) + h(2) = h(0)(t) + (H1eik·x+λt + c.c.)

+
∑

m=−2,0,2

H2,m(t)eimk·x

S ∼= S(0) + S(1) + S(2) = S(0)(z, t) + (S1(z)eik·x+λt + c.c.)

+
∑

m=−2,0,2

S2,m(z, t)eimk·x

p ∼= p(0) + p(1) + p(2) = p(0)(z, t) + (P1(z)eik·x+λt + c.c.)

+
∑

m=−2,0,2

P2,m(z, t)eimk·x

with λ, k, determined by the first order analysis to result in maximum growth rate.
The coefficient H1 can be chosen to be real and if so, as it turns out, the functions
S1(z), P1(z), arethen also real (see DK02). Quadratic interactions between modes
with different wavevectors are excluded because the immediate concern is the mean
amplitudesH2,0, S2,0, P2,0, which depend only on single mode interactions of the
form (Qeik·x)(Re−ik·x).

Thequantitiesp(2) andS(2) satisfy

∇2 p(2) = −S(2) z < h(0) (12)
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∇2S(2) =
{

0 z > h(0)

GS(2) z < h(0) (13)

with outer boundary conditions∂z p(2)|z=−∞ = ∂z S(2)|z=−∞ = 0 andS(2)|z=h(0)+L

= 0.
Expand to obtain to second order

n = 1√
1 + |∂xh|2 + |∂yh|2


−∂xh

−∂yh
1




∼=

0

0
1


+


−∂xh(1)

−∂yh(1)

0


+


 −∂xh(2)

−∂yh(2)

−(1/2)(|∂xh(1)|2 + |∂yh(1)|2)


 .

Then[S] = [∇S · n] = 0 implies that

[S(1)] = 0

[∂z S(1)] = (GS(0)|h(0)−)h(1) = G

1 + F
h(1)

[S(2)] = − (1
2GS(0)|h(0)−

)
(h(1))2 = −1

2

G

1 + F
(h(1))2 (14)

[∂z S(2)] = (GS(0)|h(0)−)h(2) + (
1
2G∂z S0|h(0)−

)
(h(1))2

= G

1 + F
h(2) + 1

2

G3/2

1 + F
(h(1))2. (15)

Wewish to determine the mean quantitiesH2,0, S2,0, P2,0. By averaging (12), (13),
and applying the averaged top and bottom boundary conditions we obtain

S2,0(z, t) =



C2,0(t)(1 − L−1(z − h(0))) h(0) < z < h(0) + L

C̄2,0(t) exp[−√
G(h(0) − z)] z < h(0)

(16)

∂z P2,0(z, t) = −
∫ z

−∞
S2,0(s, t)ds

= − C̄2,0(t)√
G

exp[−√
G(h(0) − z)] z < h(0) (17)

for as yet unknown amplitude coefficientsC(t), C̄(t). Averaging the interface
conditions (14), (15) results in the requirements

[S2,0] = − G

1 + F
H 2

1 e2λt

[∂zS2,0] = G

1 + F
H2,0 + G3/2

1 + F
H 2

1 e2λt .
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From (16), [S2,0] = C2,0 − C̄2,0 and[∂z S2,0] = −L−1C2,0 − √
GC̄2,0 so that

C2,0 = −G1/2 F

(1 + F)2
H2,0 − G

2F

(1 + F)2
H 2

1 e2λt (18)

C̄2,0 = −G1/2 F

(1 + F)2
H2,0 + G

1 − F

(1 + F)2
H 2

1 e2λt . (19)

Using ∂2
z p(0) = −S(0), ∂2

z p(1) = k2p(1) − S(1), p|h = 0 at first order, then
equation (7) at second order becomes

d

dt
h(2) = (S(0)|h(0)−)h(2) + (

1
2∂z S(0)|h(0)−

)
(h(1))2 + (S(1)|h(0)−)h(1)

+ (k2∂z p(0)|h(0))(h(1))2 − ∂z p(2)|h(0) .

Averaging and noting (17) results in

d

dt
H2,0 = (S(0)|h(0)−)H2,0 − ∂z P2,0|h(0) + ((∂z S(0)|h(0) ) + (2S1|h(0)−)

+ (2k2∂z p(0)|h(0)))H 2
1 e2λt

= 1

(1 + F)2
H2,0 + 2

√
G

1 + F

×
(

1

1 + F
− tanh[E F]

E + (1 + E2)1/2 tanh[E F] − E2

)
H 2

1 e2λt

≡ δH2,0 + γ H 2
1 e2λt

whereE ≡ k/
√

G, with solution

H2,0 = 1 − e−(2λ−δ)t

2λ − δ
γ H 2

1 e2λt ≡ 
2,0H 2
1 e2λt (20)

[if δ = 2λ thenH2,0(t) = tγ H 2
1 e2λt ]. ThusH2,0 grows exponentially with the sign

determined by the sign of the coefficientγ . Note that 2λ−δ ∼= 0.2944−(1+ F)−2

which can safely be assumed positive for values ofF = L
√

G relevant here. For
large G (thin active layer) and fixed substrate boundary layer thicknessL, i.e.,
the substrate concentration boundary layer is thick compared to the biofilm active
region, thenγ ∼= −2.9712

√
G(1 + F)−1 ∼= −2.9712L−1 so that H2,0 will be

negative thus indicating retardation of mean biofilm growth. As noted, largeF
is generally the relevant regime for low levels of external shear stress considered
in this paper—in the absence of significant bulk fluid flow, substrate advection
will generally not be substantial and hence comparatively large diffusive boundary
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layers can be expected. The nonlinear analysis presented here predicts, perhaps
counterintuitively, that fingering behavior will typically inhibit biofilm growth and
substrate uptake. Despite increased biofilm surface area, decreased accessibility
of substrate results in reduced growth. Note that in the limit of smallF , i.e., a
thin substrate boundary layer compared to active region depth,γ > 0 andhence
H2,0 > 0 so that biofilm growth is enhanced. In this case the increased biofilm
surface area is easily visible to the substrate resulting in increased growth. Small
F may occur for example in the presence of advective flow in the bulk fluid. How-
ever advective flow also results in shear stress so that applicability of the present
analysis to the smallF regime is unclear. WhenF is large, however, the substrate
source is far from the interface and hence diffusion damps advantageous effects
of increased interface area on substrate uptake in the biofilm—this damping goes
as(1 + F)−1. The dominant effect is an effectively increased barrier to substrate
transport through the now nonhomogenous interface region. The effect does not
decay with increasingF . Thus fingering would seem to actually reduce overall
biofilm growth rate.

4. SUMMARY AND CONCLUSIONS

Considerable speculation has been devoted to the relation between form and
function in observed biofilm structure. Why do biofilms sometimes form dense,
homogeneous layers and sometimes form complex heterogeneous structures? Such
variation is observed not only between different biofilms but also within the same
biofilm subject to varying environmental conditions. For example,Stoodleyet al.
(1999a) observed a heterogenous biofilm become thick and homogeneous when
exposed to higher glucose concentrations. These structural changes were reversed
when glucose concentration was returned to its original level. Similar results were
reported inMøller et al. (1998). For reasons of practicality, these biofilms are
grown under conditions including bulk fluid shear. However structural variations
in response to environmental conditions are also observed in biofilms grown in
static conditions, e.g.,Balabanet al. (2003).

Thus a popular suggestion is that biofilm structure varies in response to nutri-
ent availability. For example,Beyenal and Lewandowski(2002) argue that biofilm
structure changes to maximize nutrient transport subject to the constraint of resist-
ing exterior bulk flow stress. An obvious possible mechanism for improved intake
would be to increase the biofilm–bulk fluid interface area. The basic mechanical
model reported here would however seem to indicate that increased interface area
can actually inhibit nutrient absorption. While biofilm finger-tops see an improved
nutrient environment, a forest of biofilm mushrooms effectively creates a mushy
biofilm–bulk fluid layer that slows nutrient transport to the forest floor. This damp-
ening is reversed under sufficiently vigourous bulk flow. Though in that case,
mushroom structures become susceptible to shear stress and resulting catastrophic
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failure (Stoodleyet al., 2001). So even in that regime, increased growth may still
not provide a true functional advantage.

Nevertheless, exposure of the biofilm undercarriage via heterogeneity may be
of benefit even if slowdown of overall growth results. Biofilms attain structural
integrity through the EPS matrix (Allison, 2003). Among other properties, the
EPSmatrix appears to give biofilms viscoelastic constitutive properties that can
provide at least some protection from external mechanical stresses (Ohashi and
Harada, 1994; Stoodleyet al., 1999b; Koerstgenset al., 2001; Klapperet al., 2002;
Towler et al., in press). Recent work suggests that EPS can degrade under nutri-
ent poor conditions (Stoodleyet al., 2002; Zhang andBishop, 2003). Hence, one
may speculate that heterogeneous structure (and attendant increased surface area)
formed in response to low concentration levels of the limiting nutrient, regardless
of effect on overall growth, may serve to improve access of structurally important
regions of the EPS matrix to nutrient. Resolution of the connection between biofilm
form and function, however, awaits improved understanding of biofilm mechanical
properties.
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