Skip to main content

Advertisement

Log in

Effect of heterogeneous structure in mechanically unstressed biofilms on overall growth

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In contrast to their name, biofilms are not always flat and homogeneous but instead often exhibit complex structural heterogeneity. It has been suggested that nonhomogeneous geometry is selected in order to increase biofilm growth rate. A previous study (Dockery and Klapper (2002) SIAM J. Appl. Math., 62, 853–869) of a model biofilm system in a static bulk fluid demonstrated that under some circumstances a flat biofilm-bulk fluid interface is linearly unstable to perturbation due to growth induced forces. Computations indicated that subsequent nonlinear evolution results in fingers and mushrooms of biofilm similar to structures observed in actual biofilms. However, the important complementary issue of biological functionality was not considered. Here a weakly nonlinear analysis of the simple growing biofilm layer model in Dockery and Klapper (2002, SIAM J. Appl. Math., 62, 853–869) is presented. It is argued that, at least in the case of biofilms free of external mechanical stress, overall growth is in fact generally inhibited by the presence of growing perturbations in the linear stage. Hence a more complex explanation of function is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, D. G. (2003). The biofilm matrix. Biofouling 19, 139–150.

    Article  Google Scholar 

  • Balaban, N., Y. Gov, A. Bitler and J. R. Boelaert (2003). Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. Kidney Int. 63, 340–345.

    Article  Google Scholar 

  • Beyenal, H. and Z. Lewandowski (2002). Internal and external mass transfer in biofilms grown at various flow velocities. Biotechnol. Prog. 18, 55–61.

    Article  Google Scholar 

  • Breyers, J. D. (Ed.) (2000). Biofilms II, New York: Wiley-LISS.

    Google Scholar 

  • Byrne, H. M. (1999). A weakly nonlinear analysis of a model of avascular tumor growth. J. Math. Biol. 39, 59–89.

    Article  MATH  MathSciNet  Google Scholar 

  • Chaplain, M., S. M. Giles and R. J. Jarvis (1995). A mathematical analysis of a model for tumour angiogenesis. J. Math. Biol. 33, 744–770.

    Article  MATH  Google Scholar 

  • Cogan, N. (2003). The role of the biofilm matrix in structural development. Math. Med. Biol. (submitted for publication).

  • Costerton, J. W. (1995). Overview of microbial biofilms. J. Ind. Microbiol. 15, 137–140.

    Article  Google Scholar 

  • Costerton, J. W., K.-J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta and T. J. Marrie (1987). Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464.

    Article  Google Scholar 

  • Costerton, J. W., P. S. Stewart and E. P. Greenberg (1999). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.

    Article  Google Scholar 

  • Dockery, J. D. and I. Klapper (2002). Finger formation in biofilms. SIAM J. Appl. Math 62, 853–869.

    Article  MathSciNet  Google Scholar 

  • Eberle, H. J., D. F. Parker and M. C. M. van Loosdrecht (2001). A new deterministic spatiotemporal continuum model for biofilm development. J. Theor. Med. 3, 161–175.

    Google Scholar 

  • Ermentrout, G. B. (1991). Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. R. Soc. Lond. A 434, 413–417.

    Article  MATH  MathSciNet  Google Scholar 

  • Greenspan, H. P. (1974). On the self-inhibited growth of cell cultures. Growth 38, 81–95.

    Google Scholar 

  • Greenspan, H. P. (1975). On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242.

    MathSciNet  Google Scholar 

  • Heersink, J., W. J. Costerton and P. Stoodley (2003). Influence of the Sonicare toothbrush on the structure and thickness of laboratory grown Streptococcus mutans biofilms assessed by digital time-lapse and confocal microscopy. Am. J. Dentistry 16, 79–83.

    Google Scholar 

  • Heijnen, J. J., C. Picioreanu and M. C. M. van Loosdrecht (1998). Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58, 106–116.

    Google Scholar 

  • Hermanowicz, S. W. (2001). A simple 2D biofilm model yields a variety of morphological features. Math. Biosci. 169, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  • Klapper, I., C. J. Rupp, R. Cargo, B. Purvedorj and P. Stoodley (2002). A viscoelastic fluid description of bacterial biofilm material properties. Biotech. Bioeng. 80, 289–296.

    Article  Google Scholar 

  • Koerstgens, V., H.-C. Flemming, J. Wingender and W. Borchard (2001). Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Wat. Sci. Technol. 43, 49–57.

    Google Scholar 

  • Kreft, J. U. and J. W. Wimpenny (2001). Effect of EPS on biofilm structure and function as revealed by an individual-basedmodel of biofilm growth. Wat. Sci. Technol. 43, 135–135.

    Google Scholar 

  • Møller, S., C. Sternberg, J. B. Andresen, B. B. Christensen, J. L. Ramos, M. Givskov and S. Molin (1998). In situ gene expression in mixed culture biofilms: evidence of metabolic interactions between community members. Appl. Env. Microbiol. 64, 721–732.

    Google Scholar 

  • Ohashi, A. and H. Harada (1994). Adhesion strength of biofilm developed in an attached growth reactor. Wat. Sci. Tech. 29, 281–288.

    Google Scholar 

  • Picioreanu, C. (2000). Multidimensional modeling of biofilm structure. PhD thesis, Delft University of Technology.

  • Schultz, M. P. and G. W. Swain (1999). The effect of biofilms on turbulent boundary layers. ASME J. Fluids Eng. 121, 44–51.

    Google Scholar 

  • Stewart, P. S. (2003). Diffusion in biofilms. J. Bacteriol. 185, 1485–1491.

    Article  Google Scholar 

  • Stoodley, P., I. Dodds, J. D. Boyle and H. Lappin-Scott (1999a). Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. 85, 19S–28S.

    Google Scholar 

  • Stoodley, P., Z. Lewandowski, J. D. Boyle and H. Lappin-Scott (1999b). Structural deformation of bacterial biofilms by short term fluctuations in flow velocity: an in situ demonstration of biofilm viscoelasticity. Biotech. Bioeng. 65, 83–92.

    Article  Google Scholar 

  • Stoodley, P., K. Sauer, D. G. Davies and J. W. Costerton (2002). Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209.

    Article  Google Scholar 

  • Stoodley, P., S. Wilson, L. Hall-Stoodley, J. D. Boyle and H. Lappin-Scott (2001). Growth and detachment of cell clusters from mature mixed species biofilms. Appl. Environ. Microbiol. 67, 5608–6513.

    Article  Google Scholar 

  • Towler, B. W., C. J. Rupp, A. Cunningham and P. Stoodley (2003). Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling (in press).

  • Wanner, O. and P. Riechert (1996). Mathematical modeling of mixed-culture biofilm. Biotechnol. Bioeng. 49, 172–184.

    Article  Google Scholar 

  • Wentland, E. J., P. S. Stewart, C.-T. Huang and G. A. McFeters (1996). Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilms. Biotechnol. Prog. 12, 316–321.

    Article  Google Scholar 

  • Wimpenny, J. W. T. and R. Colasanti (1997). A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Micro. Ecol. 22, 1–16.

    Google Scholar 

  • Wood, B. D. and S. Whitaker (1999). Cellular growth in biofilms. Biotech. Bioeng. 64, 656–670.

    Article  Google Scholar 

  • Xu, K. D., P. S. Stewart, F. Xia, C.-T. Huang and G. A. McFeters (1998). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64, 4035–4039.

    Google Scholar 

  • Zhang, X. and P. L. Bishop (2003). Biodegradability of biofilm extracellular polymeric substances. Chemosphere 50, 63–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klapper, I. Effect of heterogeneous structure in mechanically unstressed biofilms on overall growth. Bull. Math. Biol. 66, 809–824 (2004). https://doi.org/10.1016/j.bulm.2003.11.008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.11.008

Keywords

Navigation