Skip to main content
Log in

Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A formal sensitivity analysis is performed on a delay differential equation model for the viral dynamics of an in vivo HIV infection during protease inhibitor therapy. We present results of both a differential analysis as well as a principle component based analysis and provide evidence that suggests the exact times at which specific parameters have the most influence over the solution. We offer insight into the pairwise mathematical relationships between the productively infected T-cell death rate δ, the viral plasma clearance rate c, and the time delay τ between infection and viral production as they relate to the viral dynamics. The results support the claim that the presence of a nonzero delay has a major impact on the model dynamics. Lastly, we comment upon the inadequacies of an alternative principle component based analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, H. M. and R. T. Haftka (1986). Sensitivity analysis of discrete structural systems. A.I.A.A.J. 24, 823–832.

    Google Scholar 

  • Banks, H. T. and D. M. Bortz (2002). A parameter sensitivity methodology in the context of HIV delay equation models. Technical Report CRSC-TR02-24, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC (J. Math. Biol., to appear).

    Google Scholar 

  • Bellman, R. and K. L. Cooke (1963). Differential-Difference Equations, Mathematics in Science and Engineering 6, New York, NY: Academic Press Inc.

    Google Scholar 

  • Bortz, D. M. (2002). Modeling, analysis, and estimation of an in vitro HIV infection using functional differential equations, PhD dissertation, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Christie, S. H. (1833). The Bakerian lecture: experimental determination of the laws of magneto-electric induction in different masses of the same metal, and of its intensity in different metals. Philos. Trans. R. Soc. Lond. Biol. Sci. 123, 95–142.

    Google Scholar 

  • Eslami, M. (1994). Theory of Sensitivity in Dynamic Systems: An Introduction, Berlin: Springer.

    Google Scholar 

  • Frank, P. M. (1978). Introduction to System Sensitivity Theory, New York, NY: Academic Press.

    Google Scholar 

  • Iman, R. L. and J. C. Helton (1988). An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Anal. 8, 71–90.

    Article  Google Scholar 

  • Kleiber, M., H. Antúnez, T. D. Hien and P. Kowalczyk (1997). Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations, New York, NY: John Wiley & Sons.

    Google Scholar 

  • Lazarides, A. A., H. Rabitz, J. Chang and N. J. Brown (1998). Identifying collective dynamical observables bearing on local features of potential surfaces. J. Chem. Phys. 109, 2065–2070.

    Article  Google Scholar 

  • Lazarides, A. A., H. Rabitz and F. R. W. McCourt (1994). A quantitative technique for revealing the usefulness of experimental data in refining a potential surface. J. Chem. Phys. 101, 4735–4749.

    Article  Google Scholar 

  • Lin, C. C. and L. A. Segel (1988). Mathematics Applied to Deterministic Problems in the Natural Sciences, Classics in Applied Mathematics 1, Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Moré, J. J. and S. J. Wright (1993). Optimization Software Guide, Frontiers in Applied Mathematics 14, Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Nelson, P. W., J. E. Mittler and A. S. Perelson (2001). Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV viral dynamic parameters. J. Acquir. Immune Defic. Syndr. 26, 405–412.

    Google Scholar 

  • Nelson, P. W., J. D. Murray and A. S. Perelson (2000). A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215.

    Article  MathSciNet  Google Scholar 

  • Nelson, P. W. and A. S. Perelson (2002). Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94.

    Article  MathSciNet  Google Scholar 

  • Perelson, A. S. and P. W. Nelson (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44.

    Article  MathSciNet  Google Scholar 

  • Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586.

    Google Scholar 

  • Saltelli, A., K. Chan and E. M. Scott (Eds), (2000). Sensitivity Analysis, Wiley Series in Probability and Statistics, New York, NY: John Wiley & Sons.

    Google Scholar 

  • Shampine, L. F. and S. Thompson (2001). Solving DDEs in Matlab. Appl. Numer. Math. 37, 441–458.

    Article  MathSciNet  Google Scholar 

  • Stafford, M. A., L. Corey, Y. Cao, E. S. Daar, D. D. Ho and A. S. Perelson (2000). Modeling plasma virus concentration during primary HIV infection. J. Theor. Biol. 203, 285–301.

    Article  Google Scholar 

  • Stilianakis, N. I., K. Dietz and D. Schenzle (1997). Analysis of a model for the pathogenesis of AIDS. Math. Biosci. 145, 27–46.

    Article  MathSciNet  Google Scholar 

  • Vajda, S. and T. Turányi (1986). Principal component analysis for reducing the Edelson-Field-Noyes model of the Belousov-Zhabotinsky reaction. J. Phys. Chem. 90, 1664–1670.

    Article  Google Scholar 

  • Vajda, S., P. Valko and T. Turányi (1985). Principal component analysis of kinetic models. Int. J. Chem. Kinetics 17, 55–81.

    Article  Google Scholar 

  • Wierzbicki, A. (1984). Models and Sensitivity of Control Systems, Studies in Automation and Control 5, New York, NY: Elsevier Science Publishing Company Inc.

    Google Scholar 

  • Zhou, W., R. A. Yetter, F. L. Dryer, H. Rabitz, R. C. Brown and C. E. Kolb (1998). Effect of fluorine on the combustion of ‘Clean’ surface boron particles. Combustion Flame 112, 507–521.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortz, D.M., Nelson, P.W. Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics. Bull. Math. Biol. 66, 1009–1026 (2004). https://doi.org/10.1016/j.bulm.2003.10.011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.10.011

Keywords

Navigation