Skip to main content
Log in

Control of CNP homeostasis in herbivore consumers through differential assimilation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Stoichiometric analysis recognizes that a herbivore is a mixture of multiple chemical elements, especially C, N, and P, that are fixed in various proportions. In the face of a variable quality food supply, herbivores must regulate ingested nutrients to maintain a homeostatic state. We develop a dynamic mathematical model, based on differential assimilation, that controls the C: N and C: P ratios in a herbivore within given tolerance ranges; the actual mathematical mechanism is to define the absorption coefficients to be dependent on these elemental ratios. The model inputs variable, time-dependent food and grazing rates and calculates the net dynamic consumer production (growth) of C, N, and P. It shows that total growth is equally sensitive to variations in both food quality and in assimilation rates, and it shows quantitatively how C-, N-, or P-limited growth could occur at different periods during the development period. The analysis generalizes earlier work limited to just two elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. R. and D. O. Hessen (1995). Carbon or nitrogen limitation in marine copepods. J. Plankton Res. 14, 1645–1671.

    Google Scholar 

  • Bloom, A. J., F. S. Chapin III and H. A. Mooney (1985). Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Systematics 16, 363–392.

    Google Scholar 

  • Brett, M. (1993). Comment on “Possibility of N or P limitation for planktonic cladocerans: an experimental test” (J. Urabe & J. Watanabe) and “Nutrient element limitation of zooplankton production” (D. O. Hessen). Limnology Oceanography 38, 1333–1337.

    Article  Google Scholar 

  • Dade, W. B., P. A. Jumars and D. L. Penry (1990). Supply-side optimization: maximizing absorptive rates, in Behavioral Mechanisms of Food Selection, NATO ASI series G 20, R. N. Hughes (Ed.), Berlin: Springer, pp. 531–555.

    Google Scholar 

  • Daufresne, T. and M. Loreau (2001). Plant-herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation? Ecol. Lett. 4, 196–206.

    Article  Google Scholar 

  • DeAngelis, D. L. (1992). Dynamics of Nutrient Cycling and Food Webs, London: Chapman-Hall.

    Google Scholar 

  • Frost, P. C. and J. J. Elser (2002). Growth responses of littoral mayflies to the phosphorus content of their food. Ecol. Lett. 5, 232–240.

    Article  Google Scholar 

  • Gurney, W. C. and R. M. Nisbet (1998). Ecological Dynamics, Oxford: Oxford University Press.

    Google Scholar 

  • Jumars, P. A. (2000). Animal guts as nonideal chemical reactors: maximizing absorption rates. Amer. Nat. 155, 527–543.

    Article  Google Scholar 

  • Jumars, P. A. and C. Martínez del Rio (1999). The tau of continuous feeding on simple foods. Physiol. Biochem. Zool. 72, 633–641.

    Article  Google Scholar 

  • Karasov, W. H. and I. D. Hume (1997). Vertebrate gastrointestinal system, in Handbook of Physiology, Section 13, Comparative Physiology, W. H. Dantzler (Ed.), Oxford: Oxford University Press.

    Google Scholar 

  • Kooijman, S. A. L. M. (1995). The stoichiometry of animal energetics. J. Theor. Biol. 177, 139–149.

    Article  Google Scholar 

  • Kooijman, S. A. L. M. (2000). Dynamic Energy Budgets, Cambridge: Cambridge University Press.

    Google Scholar 

  • Lika, K. and R. M. Nisbet (2000). A dynamic energy budget model based on partitioning of net production. J. Math. Biol. 41, 361–386.

    Article  MathSciNet  MATH  Google Scholar 

  • Lotka, A. (1925). Elements of Physical Biology, Baltimore: Williams & Wilkins.

    MATH  Google Scholar 

  • Logan, J. D., A. Joern and W. Wolesensky (2002). Location, time, and temperature dependence of digestion in simple animal tracts. J. Theor. Biol. 216, 5–18.

    Article  MathSciNet  Google Scholar 

  • Logan, J. D., A. Joern and W. Wolesensky (2003a). Chemical reactor model of optimal digestion efficiency with constant foraging costs. Ecol. Modelling 168, 25–38.

    Article  Google Scholar 

  • Logan, J. D., A. Joern and W. Wolesensky (2003b). Mathematical model of consumer homeostasis control in plant-herbivore dynamics. Math. Comput. Modelling (in press).

  • Loladze, I., Y. Kuang and J. J. Elser (2000). Stoichiometry in producer-grazer systems: linking energy flow with element cycling. Bull. Math. Biol. 62, 1137–1162.

    Article  Google Scholar 

  • Loladze, I., Y. Kuang, J. J. Elser and W. F. Fagan (2004). Competition and stoichiometry of two predators on one prey. Theor. Popul. Biol. 65, 1–15.

    Article  MATH  Google Scholar 

  • Martínez del Rio, C. and W. Karasov (1990). Digestion strategies in nectar and fruit-eating birds and the sugar composition of plant rewards. Amer. Nat. 135, 618–637.

    Article  Google Scholar 

  • Mueller, E. B., R. M. Nisbet, S. A. L. M. Kooijman, J. J. Elser and E. McCauley (2001). Stoichiometric food quality and herbivore dynamics. Ecol. Lett. 4, 519–529.

    Article  Google Scholar 

  • Raubenheimer, D. and S. J. Simpson (1994). The analysis of energy budgets. Funct. Ecol. 8, 783–791.

    Google Scholar 

  • Raubenheimer, D. and S. J. Simpson (1997). Integrative models of nutrient balancing: application to insects and vertebrates. Nutr. Res. Rev. 10, 151–171.

    Article  Google Scholar 

  • Shindler, D. E. and L. A. Eby (1997). Stoichiometry of fishes and their prey: implications of nutrient recycling. Ecology 76, 1816–1831.

    Article  Google Scholar 

  • Sibly, R. M. (1981). Strategies of digestion and defecation, in Physiological Ecology: An Evolutionary Approach to Resource Use, C. R. Townsend and P. Calow (Eds), Sunderland, MA: Sinauer Associates, pp. 109–139.

    Google Scholar 

  • Simpson, S. J. and D. Raubenheimer (1993). A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Phil. Trans. Biol. Sci. 342, 381–402.

    Google Scholar 

  • Simpson, S. J. and D. Raubenheimer (2000). The hungry locust. Adv. Study Behav. 29, 1–44.

    Article  Google Scholar 

  • Sterner, R. W. (1997). Modelling interactions of food quality and quantity in homeostatic consumers. Freshwater Biol. 38, 473–481.

    Article  Google Scholar 

  • Sterner, R. W. and D. O. Hessen (1994). Algal nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Systematics 25, 1–29.

    Article  Google Scholar 

  • Sterner, R. W. and J. J. Elser (2002). Ecological Stoichiometry, Princeton: Princeton University Press.

    Google Scholar 

  • Tang, K. W. and H. G. Dam (1999). Limitation in zooplankton production: beyond stoichiometry. Oikos 84, 537–542.

    Google Scholar 

  • Thingstad, T. F. (1987). Utilization of N, P, and organic C by heterotrophic bacteria. Mar. Ecol. Prog. Ser. 35, 99–109.

    Google Scholar 

  • Whelan, C. J. and K. A. Schmidt (2003). Food acquisition, processing and digestion, in Foraging, D. W. Stephens, J. S. Brown and R. Ydenberg (Eds), Chicago: University of Chicago Press, Chapter 6.

    Google Scholar 

  • White, T. C. R. (1993). The Inadequate Environment: Nitrogen and the Abundance of Animals, Berlin: Springer.

    Google Scholar 

  • Wolesensky, W. (2002). Mathematical model of digestion modulation in grasshoppers. PhD dissertation, University of Nebraska-Lincoln, Lincoln, NE.

    Google Scholar 

  • Wolesensky, W., A. Joern and J. D. Logan (2003). A model of digestion modulation in grasshoppers. Ecol. Modelling (in review).

  • Woods, H. A. and J. G. Kingsolver (1999). Feeding rate and the structure of protein digestion and absorption in Lepidopteran midguts. Arch. Insect Biochem. Physiol. 42, 74–87.

    Article  Google Scholar 

  • Yang, Y. and A. Joern (1994). Influence of diet quality, developmental stage, and temperature on food residence time in the grasshopper Melanoplus differentialis. Physiol. Zool. 67, 598–616.

    Google Scholar 

  • Zanotto, F. P., S. M. Gouveia, S. J. Simpson, D. Raubenheimer and P. C. Calder (2000). Nutritional homeostasis in locusts: is there a mechanism for increased energy expenditure during carbohydrate overfeeding? J. Exp. Biol. 2437–2448.

  • Zanotto, F. P., S. J. Simpson and D. Raubenheimer (1993). The regulation of growth by locusts through post-ingestive compensation for variation in the levels of dietary protein and carbohydrate. Physiol. Entomology 18, 425–434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Logan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, J.D., Joern, A. & Wolesensky, W. Control of CNP homeostasis in herbivore consumers through differential assimilation. Bull. Math. Biol. 66, 707–725 (2004). https://doi.org/10.1016/j.bulm.2003.10.008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.10.008

Keywords

Navigation