Skip to main content
Log in

A stochastic gene evolution model with time dependent mutations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop here a new class of gene evolution models in which the nucleotide mutations are time dependent. These models allow to study nonlinear gene evolution by accelerating or decelerating the mutation rates at different evolutionary times. They generalize the previous ones which are based on constant mutation rates. The stochastic model developed in this class determines at some time t the occurrence probabilities of trinucleotides mutating according to 3 time dependent substitution parameters associated with the 3 trinucleotide sites. Therefore, it allows to simulate the evolution of the circular code recently observed in genes. By varying the class of function for the substitution parameters, 1 among 12 models retrieves after mutation the statistical properties of the observed circular code in the 3 frames of actual genes. In this model, the mutation rate in the 3rd trinucleotide site increases during gene evolution while the mutation rates in the 1st and 2nd sites decrease. This property agrees with the actual degeneracy of the genetic code. This approach can easily be generalized to study evolution of motifs of various lengths, e.g., dicodons, etc., with time dependent mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akashi, H. and A. Eyre-Walker (1998). Translational selection and molecular evolution. Curr. Opin. Genet. Dev. 8, 688–693.

    Article  Google Scholar 

  • Arquès, D. G., J.-P. Fallot and C. J. Michel (1998). An evolutionary analytical model of a complementary circular code simulating the protein coding genes, the 5′ and 3′ regions. Bull. Math. Biol. 60, 163–194.

    Article  Google Scholar 

  • Arquès, D. G. and C. J. Michel (1996). A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45–58.

    Article  Google Scholar 

  • Béal, M.-P. (1993). Codage Symbolique, Paris: Masson.

    Google Scholar 

  • Berg, O. G. and P. J. N. Silva (1997). Codon bias in Escherichia coli: the influence of codon context on mutation and selection. Nucleic Acids Res. 25, 1397–1404.

    Article  Google Scholar 

  • Berstel, J. and D. Perrin (1985). Theory of Codes, New York: Academic Press.

    Google Scholar 

  • Campbell, A., J. Mrázek and S. Karlin (1999). Genomic signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc. Natl. Acad. Sci. USA 96, 9184–9189.

    Article  Google Scholar 

  • Crick, F. H. C., J. S. Griffith and L. E. Orgel (1957). Codes without commas. Proc. Natl. Acad. Sci. USA 43, 416–421.

    Article  MathSciNet  Google Scholar 

  • Ermolaeva, M. D. (2001). Synonymous codon usage in bacteria. Curr. Issues Mol. Biol. 3, 91–97.

    Google Scholar 

  • Grantham, R., C. Gautier, M. Gouy, R. Mercier and A. Pave (1980). Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 8, r49–r62.

    Google Scholar 

  • Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2, 12–34.

    Google Scholar 

  • Jukes, T. H. and V. Bhushan (1986). Silent nucleotide substitutions and G + C content of some mitochondrial and bacterial genes. J. Mol. Evol. 24, 39–44.

    Article  Google Scholar 

  • Jukes, T. H. and C. R. Cantor (1969). Evolution of protein molecules, in Mammalian Protein Metabolism, H. N. Munro (Ed.), New York: Academic Press, pp. 21–132.

    Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  Google Scholar 

  • Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 78, 454–458.

    Article  MATH  Google Scholar 

  • Koch, A. J. and J. Lehmann (1997). About a symmetry of the genetic code. J. Theor. Biol. 189, 171–174.

    Article  Google Scholar 

  • Konu, O. and M. D. Li (2002). Correlations between mRNA expression levels and GC contents of coding and untranslated regions of genes in rodents. J. Mol. Evol. 54, 35–41.

    Article  Google Scholar 

  • Kozak, M. (2002). Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34.

    Article  Google Scholar 

  • Lacan, J. and C. J. Michel (2001). Analysis of a circular code model. J. Theor. Biol. 213, 159–170.

    Article  MathSciNet  Google Scholar 

  • Sharp, P. M. and G. Matassi (1994). Codon usage and genome evolution. Curr. Opin. Genet. Dev. 4, 851–860.

    Article  Google Scholar 

  • Shpaer, E. G. (1986). Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J. Mol. Biol. 188, 555–564.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian J. Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahi, J.M., Michel, C.J. A stochastic gene evolution model with time dependent mutations. Bull. Math. Biol. 66, 763–778 (2004). https://doi.org/10.1016/j.bulm.2003.10.004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.10.004

Keywords

Navigation