Skip to main content
Log in

Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Replication-competent viruses have the potential to overcome the delivery barrier in tumors that has plagued traditional gene-therapy approaches to cancer treatment. However, recent clinical data suggests that a cytokine-based immune response against the virus-infected tumor cells may severely limit the efficacy of the replication-competent approach. This paper generalizes our earlier spatial model to incorporate an immune response against the infected tumor cells. An approximate but accurate condition is derived for the virus—if uniformly injected throughout the tumor—to eradicate the tumor in the presence of the immune response. To validate the model using clinical data describing the temporal interaction of tumor necrosis factor and free virus in the plasma, we needed the immune response to be time-delayed and experience either saturated stimulation or second-order clearance. The resulting estimates of some unknown parameters provide some implications for the delivery of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J. A. and N. Bellomo (1997). A Survey of Models for Tumor-Immune System Dynamics, Boston, MA: Birkhauser.

    MATH  Google Scholar 

  • Bischoff, J. R. et al. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376.

    Article  Google Scholar 

  • Coffey, M. C., J. E. Strong, P. A. Forsyth and P. W. K. Lee (1998). Reovirus therapy of tumors with activated Ras pathways. Science 282, 1332–1334.

    Article  Google Scholar 

  • D’Argenio, D. Z. and A. Schumitzky (1997). Adapt II User’s Guide: Pharmacokinetic/Pharmacodynamics Systems Analysis Software, LosAngeles: University of Southern California, Biomedical Simulation Resource.

    Google Scholar 

  • Diekmann, O., J. A. P. Heesterbeek and J. A. J. Metz (1990). On the definition and the computation of the basic reproductive ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Fowler, J. F. (1991). The phantom of tumor treatment—continually rapid proliferation unmasked. Radioth. Oncol. 22, 156–158.

    Article  Google Scholar 

  • Ganly, I., D. Kirn, G. Eckhardt et al. (2000). A phase I study of Onyx-015, and E1B-attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clinical Cancer Res. 6, 798–806.

    Google Scholar 

  • Greenspan, H. P. (1972). Models for the growth and stability of cell cultures and solid tumours. J. Theor. Biol. 56, 229–242.

    MathSciNet  Google Scholar 

  • Heise, C., A. Sampson-Johannes, A. Williams, F. McCormick, D. D. Von Hoff and D. H. Kirn (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3, 639–642.

    Article  Google Scholar 

  • Heise, C., A. Williams, J. Olesch and D. H. Kirn (1999a). Efficacy of a replication-competent adenovirus (ONYX-015) is associated with intratumoral distribution. Cancer Gene Therapy 6, 499–504.

    Article  Google Scholar 

  • Heise, C. C., A. M. Williams, S. Xue, M. Propst and D. H. Kirn (1999b). Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res. 59, 2623–2628.

    Google Scholar 

  • Jain, R. (1994). Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65.

    Article  Google Scholar 

  • Kendall, D. G. (1965). Mathematical models of the spread of infection, in Mathematics and Computer Science in Biology and Medicine, London: Medical Research Council, pp. 213–224.

    Google Scholar 

  • Khuri, F. R. et al. (2000). A controlled trial of ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879–885.

    Article  Google Scholar 

  • Kirn, D., R. L. Martuza and J. Zweibel (2001). Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med. 7, 781–787.

    Article  Google Scholar 

  • Kuang, Y. (1993). Delay Differential Equations: with Applications to Population Dynamics, Boston: Academic Press.

    MATH  Google Scholar 

  • Mollison, D. (1977). Spatial contact models for ecological and epidemic spread. J. R. Stat. Soc. B. 39, 283–326.

    MATH  MathSciNet  Google Scholar 

  • Nemunaitis, J. et al. (2000). Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359–6366.

    Google Scholar 

  • O’Donoghue, J. A., M. Bardies and T. E. Wheldon (1995). Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J. Nuclear Med. 36, 1902–1909.

    Google Scholar 

  • Reid, T., E. Galanis, J. Abbruzzese, D. Sze, J. Andrews, L. Romel, M. Hatfield, J. Rubin and D. Kirn (2001). Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Theor. 8, 1618–1626.

    Article  Google Scholar 

  • Reid, T. et al. (2002). Hepatic artery infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 62, 6070–6079.

    Google Scholar 

  • Rodriguez, R., E. R. Schuur, H. Y. Lim, G. A. Henderson, J. W. Simons and D. R. Henderson (1997). Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cyto-toxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563.

    Google Scholar 

  • Rogulski, K. R., S. O. Freytag, K. Zhang, J. D. Gilbert, D. L. Paielli, J. H. Kim, C. C. Heise and D. H. Kirn (2000). In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res. 60, 1193–1196.

    Google Scholar 

  • Rubenštein, L. I. (1971). The Stefan problem. Translations of Math. Monographs 27, Providence, RI: American Mathematical Society.

    Google Scholar 

  • Swabb, E. A., J. Wei and P. M. Gullino (1974). Diffusion and convection in normal and neoplastic tissues. Cancer Res. 34, 2814–2822.

    Google Scholar 

  • Takeuchi, Y., N. Adachi and H. Tokumaru (1978). The stability of generalized Volterra equations. J. Math. Anal. Appl. 62, 453–473.

    Article  MathSciNet  MATH  Google Scholar 

  • Takeuchi, Y. and N. Adachi (1980). The existence of globally stable equilibria of ecosystems of the generalized Volterra type. J. Math. Biol. 10, 410–415.

    Article  MathSciNet  Google Scholar 

  • Tao, Y. and Q. Guo (2003). The Competitive Dynamics Between Tumor Cells, a Replication-competent Virus and an Immune Response, Shanghai, PR China: Department of Applied Mathematics, Dong Hua University.

    Google Scholar 

  • Ward, J. P. and J. R. King (1997). Mathematical modelling of avascular-tumour growth. IMA J. Math. Med. Appl. Biol. 14, 39–70.

    MATH  Google Scholar 

  • Wein, L. M., J. T. Wu and D. H. Kirn (2003). Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res. 63, 1317–1324.

    Google Scholar 

  • Wodarz, D. (2001). Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res. 61, 3501–3507.

    Google Scholar 

  • Wu, J. T., H. M. Byrne, D. H. Kirn and L. M. Wein (2001). Modeling and analysis of a virus that replicates selectively in tumor cells. Bull. Math. Biol. 63, 731–768.

    Article  Google Scholar 

  • Yoon, S. S., N. M. Carroll, E. A. Chiocca and K. K. Tanabe (1998). Cancer gene therapy using a replication-competent herpes simplex virus type I vector. Ann. Surgery 228, 366–374.

    Article  Google Scholar 

  • Yu, D., Y. Chen, J. Dilley, Y. Li, M. Embry, H. Zhang, P. Amin, J. Oh and D. Henderson (2001). Antitumor synergy of CN787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 61, 517–525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J.T., Kirn, D.H. & Wein, L.M. Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response. Bull. Math. Biol. 66, 605–625 (2004). https://doi.org/10.1016/j.bulm.2003.08.016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.08.016

Keywords

Navigation