Skip to main content
Log in

Investigation of the Bernoulli model for RNA secondary structures

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Within this paper we investigate the Bernoulli model for random secondary structures of ribonucleic acid (RNA) molecules. Assuming that two random bases can form a hydrogen bond with probability p we prove asymptotic equivalents for the averaged number of hairpins and bulges, the averaged loop length, the expected order, the expected number of secondary structures of size n and order k and further parameters all depending on p. In this way we get an insight into the change of shape of a random structure during the process \(1\mathop \to \limits^p 0\). Afterwards we compare the computed parameters for random structures in the Bernoulli model to the corresponding quantities for real existing secondary structures of large subunit rRNA molecules found in the database of Wuyts et al. That is how it becomes possible to identify those parameters which behave (almost) randomly and those which do not and thus should be considered as interesting, e.g., with respect to the biological functions or the algorithmic prediction of RNA secondary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and I. A. Stegun (1970). Handbook of Mathematical Functions, Dover.

  • Evers, D. J. and R. Giegerich (2001). Reducing the Conformation Space in RNA Structure Prediction, German Conference on Bioinformatics.

  • Flajolet, P., X. Gourdon and P. Dumas (1995). Mellin transforms and asymptotics: harmonic sums. Theor. Comput. Sci. 144, 3–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Flajolet, P. and A. Odlyzko (1990). Singularity analysis of generating functions. SIAM J. Disc. Math. 3, 216–240.

    Article  MathSciNet  MATH  Google Scholar 

  • Flajolet, P. and R. Sedgewick (1993). The Average case analysis of algorithms: complex asymptotics and generating functions. INRIA rapport de recherche 2026.

  • Fontana, W., D. A. M. Konings, P. F. Stadler and P. Schuster (1993). Statistics of RNA secondary structures. Biopolymers 33, 1389–1404.

    Article  Google Scholar 

  • Higgs, P. G. (1993). RNA secondary structure: a comparison of real and random sequences. J. Phys. I 3, 43–59.

    Article  Google Scholar 

  • Hofacker, I. L., P. Schuster and P. F. Stadler (1998). Combinatorics of RNA secondary structures. Discrete Appl. Math. 88, 207–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Horton, R. E. (1945). Erosioned development of streams and their drainage basins, hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 56, 275–370.

    Google Scholar 

  • Howell, J. A., T. F. Smith and M. S. Waterman (1980). Computation of generating functions for biological molecules. SIAM J. Appl. Math. 39, 119–133.

    Article  MathSciNet  MATH  Google Scholar 

  • Lesk, A. M. (1974). A combinatorial study of the effects of admitting non-Watson-Crick base pairings and of base compositions on the helix-forming potential of polynucleotides of random sequences. J. Theor. Biol. 44, 7–17.

    Google Scholar 

  • Mainville, S. (1981). Comparaisons et Auto-comparaisons de Chaînes Finies, PhD thesis, Université de Montréal, Canada.

    Google Scholar 

  • McCaskill, J. S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119.

    Article  Google Scholar 

  • Gô, M. (1967). Statistical mechanics of biopolymers and its application to the melting transition of polynucleotides. J. Phys. Soc. Japan 23, 597–608.

    Article  Google Scholar 

  • Nebel, M. E. (2002a). A unified approach to the analysis of Horton-Strahler parameters of binary tree structures. Random Struct. Algorithms 21, 252–277.

    Article  MATH  MathSciNet  Google Scholar 

  • Nebel, M. E. (2002b). Combinatorial properties of RNA secondary structures. J. Comput. Biol. 9, 541–573.

    Article  Google Scholar 

  • Nebel, M. E. (2002c). On a statistical filter for RNA secondary structures. Frankfurter Informatik-Berichte 5.

  • Pipas, J. M. and J. E. McMahon (1975). Method for predicting RNA secondary structures. Proc. Natl. Acad. Sci., USA 72, 2017–2021.

    Article  Google Scholar 

  • Régnier, M., Generating Functions in Computational Biology, invited to MABS’97, 1998.

  • Schmitt, W. R. and M. S. Waterman (1994). Linear trees and RNA secondary structure. Discrete Appl. Math. 51, 317–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Schuster, P. and P. Stadler (2000). Discrete models of biopolymers, in Handbook of Computational Chemistry and Biology, J. Crabbe, A. Konopka and M. Drew (Eds), Marcel Dekker, Inc.

  • Sprinzl, M., K. S. Vassilenko, J. Emmerich, and F. Bauer (1999). Compilation of tRNA sequences and sequences of tRNA genes, (20 December, 1999), Available from http://www.uni-bayreuth.de/departments/biochemie/trna/.

  • Stein, P. R. and M. S. Waterman (1978). On some new sequences generalizing the Catalan and Motzkin numbers. Discrete Math. 26, 261–272.

    Article  MathSciNet  Google Scholar 

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosonal topology. Bull. Geol. Soc. Am. 63, 1117–1142.

    Google Scholar 

  • Viennot, G. and M. Vauchaussade de Chaumont (1985). Enumeration of RNA secondary structures by complexity, Mathematics in medicine and biology, Lecture Notes in Biomathematics, 57, pp. 360–365.

  • Waterman, M. S. (1978a). Secondary structure of single-stranded nucleic acids. Adv. Math. Suppl. Stud. 1, 167–212.

    MATH  MathSciNet  Google Scholar 

  • Waterman, M. S. (1978b). Combinatorics of RNA hairpins and cloverleaves. Stud. Appl. Math. 1, 91–96.

    Google Scholar 

  • Waterman, M. S. and T. F. Smith (1978). RNA secondary structures: a complete mathematical analysis. Math. Biosci. 42, 257–266.

    Article  MATH  Google Scholar 

  • Wuyts, J., P. De Rijk, Y. Van de Peer, T. Winkelmans and R. De Wachter (2001). The European large subunit ribosomal RNA database. Nucleic Acids Res. 29, 175–177.

    Article  Google Scholar 

  • Zaks, S. (1980). Lexicographic generation of ordered trees. Theor. Comput. Sci. 10, 63–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Zeilberger, D. (1990). A bijection from ordered trees to binary trees that sends the pruning order to the Strahler number. Discrete Math. 82, 89–92.

    Article  MATH  MathSciNet  Google Scholar 

  • Zuker, M. and D. Sankoff (1984). RNA secondary structures and their prediction. Bull. Math. Biol. 46, 591–621.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nebel, M.E. Investigation of the Bernoulli model for RNA secondary structures. Bull. Math. Biol. 66, 925–964 (2004). https://doi.org/10.1016/j.bulm.2003.08.015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.08.015

Keywords

Navigation